Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Shi Chen-Yang, Lin Yan-Dan
    PDF
    HTML
    Get Citation
    • With the rapid development of color image contents and imaging devices in various kinds of multimedia communication systems, conventional grayscale counterparts are replaced by chromatic ones. Under such a transition, the image quality assessment (IQA) model needs to be built by subjective visual measurement, designed in accordance with the results, and applied to the related practical problems. Based on the visual perception characteristics, chromaticity and the structure feature information are quantified, and an objective IQA model combining the color appearance and the gradient image features is proposed in this paper, namely color appearance and gradient similarity(CAGS) model. Two new color appearance indices, vividness and depth, are selected to build the chromatic similarity map. The structure information is characterized by gradient similarity map. Vividness map plays two roles in the proposed model. One is utilized as feature extractor to compute the local quality of distorted image, and the other is as a weight part to reflect the importance of local domain. To quantify the specific parameters of CAGS, Taguchi method is used and four main parameters, i.e., K V, K D, K Gand α, of this model are determined based on the statistical correlation indices. The optimal parameters of CAGS are K V= K D= 0.02, K G= 50, and α= 0.1. Furthermore, the CAGS is tested by utilizing 94 reference images and 4830 distorted images from the four open image databases (LIVE, CSIQ, TID2013 and IVC). Additionally, the influences of the 35 distortion types on IQA are analyzed. Massive experiments are performed on four publicly available benchmark databases between CAGS and other 10 state-of-the-art and recently published IQA models, for the accuracy, complexity and generalization performance of IQA. The experimental results show that the accuracy PLCC of the CAGS model can achieve 0.8455 at lowest and 0.9640 at most in the four databases, and the results about commonly evaluation criteria prove that the CAGS performs higher consistency with the subjective evaluations. Among the 35 distortion types, the two distortion types, namely contrast change and change of color saturation, CAGS and mostly IQA models have the worst influence on IQA, and the CAGS yields the highest top three rank number. Moreover, the SROCC values of CAGS for other distortion types are all larger than 0.6 and the number of SROCC value larger than 0.95 is 14 times. Besides, the CAGS maintains a moderate computational complexity. These results of test and comparison above show that the CAGS model is effective and feasible, and the corresponding model has an excellent performance.
          Corresponding author:Lin Yan-Dan,ydlin@fudan.edu.cn
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2017YFB0403700)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • 数据库 原始图像数量 失真图像数量 失真类型 观察者
        TID2013 25 3000 24 971
        CSIQ 30 866 6 35
        LIVE 29 779 5 161
        IVC 10 185 4 15
        DownLoad: CSV

        代号 参数表述 水准数 水准一 水准二 水准三
        A KV 3 0.002 0.02 0.2
        B KD 3 0.002 0.02 0.2
        C KG 3 10 50 100
        D α 3 0.1 0.5 1
        DownLoad: CSV

        实验序号 A B C D SROCC SROCC的S/N RMSE RMSE的S/N
        1 1 1 1 1 0.9300 –0.6303 0.4113 7.7168
        2 1 2 2 2 0.9192 –0.7318 0.4533 6.8723
        3 1 3 3 3 0.9096 –0.8230 0.4825 6.3301
        4 2 1 2 3 0.9171 –0.7517 0.4596 6.7524
        5 2 2 3 1 0.9173 –0.7498 0.4672 6.6099
        6 2 3 1 2 0.9291 –0.6388 0.4142 7.6558
        7 3 1 3 2 0.9114 –0.8058 0.4735 6.4936
        8 3 2 1 3 0.9279 –0.6500 0.4174 7.5890
        9 3 3 2 1 0.9195 –0.7290 0.4481 6.9725
        DownLoad: CSV

        数据库 SSIM IW-SSIM IFC VIF MAD RFSIM FSIMC GSM CVSS MPCC Proposed
        TID2013 SROCC 0.7417 0.7779 0.5389 0.6769 0.7807 0.7744 0.8510 0.7946 0.8069 0.8452 0.8316
        PLCC 0.7895 0.8319 0.5538 0.7720 0.8267 0.8333 0.8769 0.8464 0.8406 0.8616 0.8445
        RMSE 0.7608 0.6880 1.0322 0.7880 0.6975 0.6852 0.5959 0.6603 0.6715 0.6293 0.6639
        KROCC 0.5588 0.5977 0.3939 0.5147 0.6035 0.5951 0.6665 0.6255 0.6331 0.6469
        CSIQ SROCC 0.8756 0.9213 0.7671 0.9195 0.9466 0.9295 0.9310 0.9108 0.9580 0.9569 0.9198
        PLCC 0.8613 0.9144 0.8384 0.9277 0.9502 0.9179 0.9192 0.8964 0.9589 0.9586 0.9014
        RMSE 0.1334 0.1063 0.1431 0.0980 0.0818 0.1042 0.1034 0.1164 0.0745 0.0747 0.1137
        KROCC 0.6907 0.7529 0.5897 0.7537 0.7970 0.7645 0.7690 0.7374 0.8171 0.7487
        LIVE SROCC 0.9479 0.9567 0.9259 0.9636 0.9669 0.9401 0.9599 0.9561 0.9672 0.9660 0.9734
        PLCC 0.9449 0.9522 0.9268 0.9604 0.9675 0.9354 0.9503 0.9512 0.9651 0.9622 0.9640
        RMSE 8.9455 8.3473 10.2643 7.6137 6.9073 9.6642 7.1997 8.4327 7.1573 7.4397 8.3251
        KROCC 0.7963 0.8175 0.7579 0.8282 0.8421 0.7816 0.8366 0.8150 0.8406 0.8658
        IVC SROCC 0.9018 0.9125 0.8993 0.8964 0.9146 0.8192 0.9293 0.8560 0.8836 0.9195
        PLCC 0.9119 0.9231 0.9093 0.9028 0.9210 0.8361 0.9392 0.8662 0.8438 0.9298
        RMSE 0.4999 0.4686 0.5069 0.5239 0.4746 0.6684 0.4183 0.6088 0.6538 0.4483
        KROCC 0.7223 0.7339 0.7202 0.7158 0.7406 0.6452 0.7636 0.6609 0.6957 0.7488
        权重平均 SROCC 0.8051 0.8376 0.6560 0.7750 0.8456 0.8306 0.8859 0.8438 0.8628 0.8737
        PLCC 0.8321 0.8696 0.6786 0.8353 0.8752 0.8650 0.8987 0.8730 0.8820 0.8772
        KROCC 0.6270 0.6662 0.5002 0.6158 0.6819 0.6575 0.7160 0.6775 0.7020 0.7044
        直接平均 SROCC 0.8668 0.8921 0.7828 0.8641 0.9022 0.8658 0.9178 0.8794 0.9039 0.9111
        PLCC 0.8769 0.9054 0.8071 0.8907 0.9164 0.8807 0.9214 0.8901 0.9021 0.9099
        KROCC 0.6920 0.7255 0.6154 0.7031 0.7458 0.6966 0.7589 0.7097 0.7466 0.7526
        DownLoad: CSV

        数据库 失真类型 SSIM IW-SSIM IFC VIF MAD RFSIM FSIMC GSM CVSS MPCC Proposed
        TID2013 AGN 0.8671 0.8438 0.6612 0.8994 0.8843 0.8878 0.9101 0.9064 0.9401 0.8666 0.9359
        ANC 0.7726 0.7515 0.5352 0.8299 0.8019 0.8476 0.8537 0.8175 0.8639 0.8187 0.8653
        SCN 0.8515 0.8167 0.6601 0.8835 0.8911 0.8825 0.8900 0.9158 0.9077 0.7396 0.9276
        MN 0.7767 0.8020 0.6932 0.8450 0.7380 0.8368 0.8094 0.7293 0.7715 0.7032 0.7526
        HFN 0.8634 0.8553 0.7406 0.8972 0.8876 0.9145 0.9094 0.8869 0.9097 0.8957 0.9159
        IN 0.7503 0.7281 0.6208 0.8537 0.2769 0.9062 0.8251 0.7965 0.7457 0.6747 0.8361
        QN 0.8657 0.8468 0.6282 0.7854 0.8514 0.8968 0.8807 0.8841 0.8869 0.7931 0.8718
        GB 0.9668 0.9701 0.8907 0.9650 0.9319 0.9698 0.9551 0.9689 0.9348 0.9218 0.9614
        DEN 0.9254 0.9152 0.7779 0.8911 0.9252 0.9359 0.9330 0.9432 0.9427 0.9510 0.9466
        JPEG 0.9200 0.9187 0.8357 0.9192 0.9217 0.9398 0.9339 0.9284 0.9521 0.8964 0.9585
        JP2 K 0.9468 0.9506 0.9078 0.9516 0.9511 0.9518 0.9589 0.9602 0.9587 0.9160 0.9620
        JPTE 0.8493 0.8388 0.7425 0.8409 0.8283 0.8312 0.8610 0.8512 0.8613 0.8571 0.8644
        J2 TE 0.8828 0.8656 0.7769 0.8761 0.8788 0.9061 0.8919 0.9182 0.8851 0.8409 0.9250
        NEPN 0.7821 0.8011 0.5737 0.7720 0.8315 0.7705 0.7937 0.8130 0.8201 0.7753 0.7833
        Block 0.5720 0.3717 0.2414 0.5306 0.2812 0.0339 0.5532 0.6418 0.5152 0.5396 0.6015
        MS 0.7752 0.7833 0.5522 0.6276 0.6450 0.5547 0.7487 0.7875 0.7150 0.7520 0.7441
        CTC 0.3775 0.4593 0.1798 0.8386 0.1972 0.3989 0.4679 0.4857 0.2940 0.7814 0.4514
        CCS 0.4141 0.4196 0.4029 0.3009 0.0575 0.0204 0.8359 0.3578 0.2614 0.7054 0.3711
        MGN 0.7803 0.7728 0.6143 0.8486 0.8409 0.8464 0.8569 0.8348 0.8799 0.8766 0.8700
        CN 0.8566 0.8762 0.8160 0.8946 0.9064 0.8917 0.9135 0.9124 0.9351 0.8174 0.9168
        LCNI 0.9057 0.9037 0.8160 0.9204 0.9443 0.9010 0.9485 0.9563 0.9629 0.8095 0.9574
        ICQD 0.8542 0.8401 0.6006 0.8414 0.8745 0.8959 0.8815 0.8973 0.9108 0.8596 0.9060
        CHA 0.8775 0.8682 0.8210 0.8848 0.8310 0.8990 0.8925 0.8823 0.8523 0.8094 0.8768
        SSR 0.9461 0.9474 0.8885 0.9353 0.9567 0.9326 0.9576 0.9668 0.9605 0.9178 0.9580
        CSIQ AWGN 0.8974 0.9380 0.8431 0.9575 0.9541 0.9441 0.9359 0.9440 0.9670 0.9329 0.9652
        JPEG 0.9543 0.9662 0.9412 0.9705 0.9615 0.9502 0.9664 0.9632 0.9689 0.9564 0.9573
        JP2 K 0.9605 0.9683 0.9252 0.9672 0.9752 0.9643 0.9704 0.9648 0.9777 0.9630 0.9545
        AGPN 0.8924 0.9059 0.8261 0.9511 0.9570 0.9357 0.9370 0.9387 0.9516 0.9517 0.9492
        GB 0.9608 0.9782 0.9527 0.9745 0.9602 0.9643 0.9729 0.9589 0.9789 0.9664 0.9574
        CTC 0.7925 0.9539 0.4873 0.9345 0.9207 0.9527 0.9438 0.9354 0.9324 0.9399 0.9273
        LIVE JP2 K 0.9614 0.9649 0.9113 0.9696 0.9676 0.9323 0.9724 0.9700 0.9719 0.9608 0.9822
        JPEG 0.9764 0.9808 0.9468 0.9846 0.9764 0.9584 0.9840 0.9778 0.9836 0.9674 0.9836
        AWGN 0.9694 0.9667 0.9382 0.9858 0.9844 0.9799 0.9716 0.9774 0.9809 0.9457 0.9837
        GB 0.9517 0.9720 0.9584 0.9728 0.9465 0.9066 0.9708 0.9518 0.9662 0.9561 0.9641
        FF 0.9556 0.9442 0.9629 0.9650 0.9569 0.9237 0.9519 0.9402 0.9592 0.9627 0.9633
        DownLoad: CSV

        IQA模型 运行时间/s IQA模型 运行时间/s
        PSNR 0.0186 RFSIM 0.1043
        SSIM 0.0892 FSIMc 0.3505
        IW-SSIM 0.6424 GSM 0.1018
        IFC 1.1554 CVSS 0.0558
        VIF 1.1825 MPCC
        MAD 2.7711 CAGS 0.4814
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • [1] Zhao Dan, Wang Shuai-Hu, Liu Shao-Gang, Cui Jin, Dong Li-Qiang.Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid. Acta Physica Sinica, 2020, 69(9): 098301.doi:10.7498/aps.69.20200326
        [2] Yao Jun-Cai, Shen Jing.Objective assessment of image quality based on image content contrast perception. Acta Physica Sinica, 2020, 69(14): 148702.doi:10.7498/aps.69.20200335
        [3] Li Ji, Liu Wu-Ming.Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302.doi:10.7498/aps.67.20180539
        [4] Yao Jun-Cai, Liu Gui-Zhong.Objective assessment method of image quality based on visual perception of image content. Acta Physica Sinica, 2018, 67(10): 108702.doi:10.7498/aps.67.20180168
        [5] Guan Yi-Jun, Sun Hong-Xiang, Yuan Shou-Qi, Ge Yong, Xia Jian-Ping.Propagation characteristics of laser-generated surface acoustic waves in composite plate with gradient changes of near-surface viscous moduli. Acta Physica Sinica, 2016, 65(22): 224201.doi:10.7498/aps.65.224201
        [6] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun.Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204.doi:10.7498/aps.65.104204
        [7] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng, Wu Qin.Image smoothing model based on the combination of the gradient and curvature. Acta Physica Sinica, 2015, 64(4): 044201.doi:10.7498/aps.64.044201
        [8] Wu Hui-Bin, Mei Feng-Xiang.A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23): 234501.doi:10.7498/aps.64.234501
        [9] Zhou Jian-Hua, Li Dong-Hua, Zeng Yang-Su, Zhu Hong-Peng.Propagation properties of Gaussian beam in gradient negative index of refraction material. Acta Physica Sinica, 2014, 63(10): 104205.doi:10.7498/aps.63.104205
        [10] Hou Ming-Qiang, Gong Zi-Zheng, Xu Kun-Bo, Zheng Jian-Dong, Cao Yan, Niu Jin-Chao.Experimental study on hypervelocity impact characteristics of density-grade thin-plate. Acta Physica Sinica, 2014, 63(2): 024701.doi:10.7498/aps.63.024701
        [11] Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang.Nonlinear dynamic analysis of nano-resonator driven by optical gradient force. Acta Physica Sinica, 2014, 63(2): 026201.doi:10.7498/aps.63.026201
        [12] Li Zhen, Zhang Xi-Wen, He Feng.Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor. Acta Physica Sinica, 2014, 63(5): 054704.doi:10.7498/aps.63.054704
        [13] Shi Ming-Zhu, Xu Ting-Fa, Liang Jiong, Li Xiang-Min.PSF estimation via gradient cepstrum analysis for single blurred image. Acta Physica Sinica, 2013, 62(17): 174204.doi:10.7498/aps.62.174204
        [14] Cai Zhi-Peng, Yang Wen-Zheng, Tang Wei-Dong, Hou Xun.Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes. Acta Physica Sinica, 2012, 61(18): 187901.doi:10.7498/aps.61.187901
        [15] Lou Zhi-Mei, Mei Feng-Xiang.A second order gradient representation of mechanics system. Acta Physica Sinica, 2012, 61(2): 024502.doi:10.7498/aps.61.024502
        [16] Feng You-Jun, Lin Zhong-Xiao, Zhang Rong-Zhu.The influence of root mean square phase gradient of continuous phase plate on smoothing focal spot. Acta Physica Sinica, 2011, 60(10): 104202.doi:10.7498/aps.60.104202
        [17] Hong Ke, Yuan Ling, Shen Zhong-Hua, Ni Xiao-Wu.Analysis of Lamb waves propagation in functional gradient materials using Taylor expansion method. Acta Physica Sinica, 2011, 60(10): 104303.doi:10.7498/aps.60.104303
        [18] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo.On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190.doi:10.7498/aps.59.7182
        [19] Hu Yue-Hui, Yin Sheng-Yi, Chen Guang-Hua, Wu Yue-Ying, Zhou Xiao-Ming, Zhou Jian-Er, Wang Qing, Zhang Wen-Li.Investigation of a-Si:H film characteristics influenced by magnetic field gradient in MWECR CVD plasma system. Acta Physica Sinica, 2004, 53(7): 2263-2269.doi:10.7498/aps.53.2263
        [20] YIN ZONG-MIN, ZHU SONG-LAI.IMAGE PROPERTIES OF TAPERED GRADIENT-INDEX FIBER. Acta Physica Sinica, 1981, 30(12): 1603-1608.doi:10.7498/aps.30.1603
      Metrics
      • Abstract views:7032
      • PDF Downloads:131
      • Cited By:0
      Publishing process
      • Received Date:19 May 2020
      • Accepted Date:12 July 2020
      • Available Online:09 November 2020
      • Published Online:20 November 2020

        返回文章
        返回
          Baidu
          map