\begin{document}${\rho _0},\;n,\;k,\;{\rm{and}}\;\omega \left( {{\rm{or}}\;\alpha } \right)$\end{document}. The parameter \begin{document}$ {\rho _0}$\end{document} controls directly the amplitude of the two-dimensional rogue wave, and the larger the value of \begin{document}$ {\rho _0}$\end{document}, the greater the amplitude of the amplitude of the two-dimensional rogue wave is. The peak number of the two-dimensional rogue wave in the \begin{document}$(x,\;y)$\end{document} and \begin{document}$(y,\;t)$\end{document} plane depends on merely the parameter n but not on the parameter k. When \begin{document}$n = 0,\;1,\;2, \cdots$\end{document}, only single peak appears in the \begin{document}$(x,\;t)$\end{document} plane, but single peak, two peaks to three peaks appear in the \begin{document}$(x,\;y)$\end{document} and \begin{document}$(y,\;t)$\end{document} plane, respectively, for the two-dimensional rogue wave of Fokas system. We can find that the two-dimensional rogue wave occurs from the zero background in the \begin{document}$(x,\;t)$\end{document} plane, but the two-dimensional rogue wave appears from the line solitons in the \begin{document}$(x,\;y)$\end{document} plane and \begin{document}$(y,\;t)$\end{document} plane.It is worth pointing out that the rogue wave obtained here can be used to describe the possible physical mechanism of rogue wave phenomenon, and may have potential applications in other (2 + 1)-dimensional nonlinear local or nonlocal models."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Zhang Jie-Fang, Jin Mei-Zhen
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:5011
    • PDF Downloads:71
    • Cited By:0
    Publishing process
    • Received Date:12 May 2020
    • Accepted Date:11 June 2020
    • Available Online:30 October 2020
    • Published Online:05 November 2020

      返回文章
      返回
        Baidu
        map