-
Image quality assessment (IQA) plays a very important role in acquiring, storing, transmitting and processing image and video. Using the characteristics of human visual perception and the features of the gray, gradient, local contrast, and blurring of image, an IQA method based on the image content contrast perception is proposed in the paper, which is called MPCC. In the proposed method, firstly, combining with the characteristics of human visual perception, based on the definition of the contrast in physics, a novel definition for image quality and its calculation method are proposed. Then, based on the gray gradient co-occurrence matrix, a novel concept, namely the gray-gradient entropy of image, and its calculation method, are proposed. And based on the gray-gradient entropy, local contrast and blurring of image, a method of describing the image content and their visual perception are proposed. Finally, based on the image content features and the image quality definition, an IQA method and its mathematical model are proposed by comprehensive analysis. Further, the proposed IQA model MPCC is tested by using 119 reference images and 6395 distorted images from the five open image databases (LIVE, CSIQ, TID2008, TID2013 and IVC). Moreover, the influences of the 52 distortion types on IQA are analyzed. In addition, in order to illustrate the advantages of the MPCC model, it is compared with the seven existing typical IQA models in terms of the accuracy, complexity and generalization performance of model. The experimental results show that the accuracy PLCC of the MPCC model can achieve 0.8616 at lowest and 0.9622 at most in the five databases; among the 52 distortion types, the two distortion types, namely the change of color saturation and the local block-wise distortions of different intensity, have the greatest influence on IQA, and the accuracy PLCC values of the seven existing IQA models are almost all below 0.6, but the PLCC of the MPCC model can reach more than 0.68; and the comprehensive benefit of the performance of the MPCC model is better than those of the seven existing IQA models. These results of test and comparison above show that the proposed IQA method is effective and feasible, and the corresponding model has an excellent performance.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] -
数据库 LIVE(779) CSIQ(866) TID2008(1700) TID2013(3000) 加权 PLCC 0.9622 0.9586 0.8778 0.8616 0.8915 SROCC 0.9660 0.9569 0.8831 0.8452 0.8854 RMSE 7.4397 0.0747 0.6427 0.6293 — OR 0.1531 0.2690 0.1287 0.1198 — 数据库 参数 PSNR VSNR SSIM FSIMc VSI GMSD MAD MPCC CSIQ PLCC 0.8000 0.8002 0.8613 0.9192 0.9279 0.9541 0.9502 0.9587 SROCC 0.8058 0.8106 0.8756 0.9310 0.9423 0.9570 0.9466 0.9569 RMSE 0.1575 0.1575 0.1334 0.1034 0.0979 0.0786 0.0818 0.0748 OR 0.4220 0.3832 0.3535 0.3041 0.2873 0.2742 0.2829 0.2738 LIVE PLCC 0.8723 0.9231 0.9449 0.9613 0.9482 0.9603 0.9675 0.9620 SROCC 0.8756 0.9274 0.9479 0.9645 0.9524 0.9603 0.9669 0.9660 RMSE 13.3597 10.5059 8.9455 7.5296 8.6816 7.6214 6.9073 7.4598 OR 0.2179 0.2151 0.1865 0.1627 0.1853 0.1643 0.1529 0.1606 TID2013 PLCC 0.7062 0.7402 0.7895 0.8769 0.9000 0.8553 0.8267 0.8648 SROCC 0.6917 0.7316 0.7417 0.8510 0.8965 0.8044 0.7807 0.8452 RMSE 0.8887 0.8392 0.7608 0.5959 0.5404 0.6423 0.6975 0.6224 OR 0.1636 0.1552 0.1427 0.1132 0.1045 0.1242 0.1323 0.1179 失真类别 PSNR VSNR SSIM FSIMc VSI GMSD MAD MPCC 1 Additive Gaussian noise(AGN) 0.9552 0.8319 0.8685 0.9152 0.9527 0.9503 0.8897 0.8706 2 Noise in color comp. (NCC) 0.9256 0.7814 0.8050 0.8873 0.9172 0.9118 0.8438 0.8324 3 Spatially correl. noise (SCN) 0.9525 0.8105 0.8621 0.8989 0.9472 0.9391 0.9008 0.7457 4 Masked noise (MN) 0.8707 0.7715 0.8219 0.8492 0.8203 0.7547 0.8009 0.6943 5 High frequency noise (HFN) 0.9731 0.9061 0.9081 0.9475 0.9655 0.9567 0.9233 0.9090 6 Impulse noise (IN) 0.8887 0.7442 0.7415 0.8171 0.8635 0.7572 0.3206 0.7408 7 Quantization noise (QN) 0.8880 0.8384 0.8702 0.8794 0.8747 0.9110 0.8571 0.8122 8 Gaussian blur (GB) 0.9169 0.9437 0.9634 0.9544 0.9551 0.9099 0.9357 0.9252 9 Image denoising (ID) 0.9640 0.9463 0.9589 0.9652 0.9707 0.9759 0.9645 0.9594 10 JPEG compression (JPEG) 0.9167 0.9386 0.9551 0.9754 0.9858 0.9843 0.9638 0.9509 11 JPEG2000 compression (JPEG2 K) 0.9170 0.9513 0.9658 0.9754 0.9845 0.9812 0.9740 0.9452 12 JPEG transm. errors (JPEG trans.) 0.8104 0.8597 0.9181 0.9176 0.9457 0.9079 0.9001 0.8805 13 JPEG2000 transm. errors (JPEG2K trans) 0.9002 0.8435 0.8801 0.8929 0.9192 0.9085 0.8838 0.8699 14 Non ecc. patt. noise (NEPN) 0.6746 0.6774 0.7773 0.8068 0.8162 0.8133 0.8608 0.8132 15 Local block-wise dist. (LBWD) 0.2410 0.3632 0.6022 0.5542 0.4984 0.6520 0.4187 0.6845 16 Mean shift (MS) 0.8056 0.5160 0.8019 0.7869 0.8021 0.7707 0.6934 0.7720 17 Contrast change (CC) 0.5811 0.4251 0.6026 0.7266 0.6974 0.7111 0.3199 0.8108 18 Change of color saturation (CSS) 0.3294 0.4184 0.4590 0.8228 0.8052 0.4234 0.2846 0.7583 19 Multipl. Gauss. noise (MGN) 0.9204 0.7730 0.7896 0.8660 0.9136 0.8911 0.8529 0.8759 20 Comfort noise (CN) 0.8702 0.9016 0.9022 0.9463 0.9546 0.9562 0.9444 0.8476 21 Lossy compr. of noisy (LCN) 0.9429 0.8960 0.9174 0.9564 0.9636 0.9703 0.9562 0.7889 22 Image color quant. w. dither (CQWD) 0.9308 0.8773 0.8619 0.8911 0.8963 0.9192 0.8779 0.8721 23 Chromatic aberrations (CA) 0.9556 0.9592 0.9770 0.9794 0.9748 0.9737 0.9696 0.9473 24 Sparse sampl. and reconstr. (SSR) 0.9296 0.9477 0.9667 0.9776 0.9808 0.9849 0.9766 0.9349 Max 0.9731 0.9592 0.9770 0.9794 0.9858 0.9849 0.9766 0.9594 Min 0.2410 0.3632 0.4590 0.5542 0.4984 0.4234 0.2846 0.6845 波动范围宽度 0.7321 0.5959 0.5181 0.4252 0.4873 0.5614 0.6920 0.2750 所有整体精度 0.7062 0.7402 0.7895 0.8769 0.9000 0.8553 0.8267 0.8648 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
Catalog
Metrics
- Abstract views:8932
- PDF Downloads:154
- Cited By:0