\begin{document}$\epsilon $\end{document} ≤ 0.9), Rayleigh number (103Ra ≤ 106), volume fraction of nanoparticle (0 ≤ ϕ ≤ 0.04), tilt angle (0° ≤ γ ≤ 120°) on the heat transfer performance are systematically investigated. Numerical results show that the non-uniform boundary condition can affect the heat transfer performance on Al2O3-H2O nanofluid with different physical quantities, which is different from the uniform boundary condition. When γ = 0° and Ra is fixed, the Nuave number (average Nusselt number) at the heated wall increases with porosity. When γ = 40°, 80° or 120°, the Nuave reaches its maximum value at \begin{document}$\epsilon $\end{document} = 0.7. In addition, if \begin{document}$\epsilon $\end{document} and Ra are fixed, the results show that the heat transfer performance is most efficient at γ = 40° whereas it is weakened at γ = 80°. Moreover, when different inclination angles are applied to the square cavity, the Nuave increases slightly with an augmentation of ϕ. In all, compared with the uniform temperature boundary condition, the effect of volume fraction of nanoparticles on the enhanced heat transfer is not significant, therefore, to improve the heat transfer performance of nanofluids with given ϕ and Ra, it is necessary to take advantage of the improvement of effective thermal conductivity for the nanofluids in porous media and the perturbation influence of inclination angles on the system together with using appropriate porosity and square cavity tilt angle to intervene the flow."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Zhang Bei-Hao, Zheng Lin
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:8754
    • PDF Downloads:127
    • Cited By:0
    Publishing process
    • Received Date:28 February 2020
    • Accepted Date:08 April 2020
    • Available Online:18 May 2020
    • Published Online:20 August 2020

      返回文章
      返回
        Baidu
        map