-
Cherenkov radiation (CR) is an electromagnetic radiation emitted by charged particles traveling through a dielectric medium at a speed faster than the phase velocity of light. CR plays an important role in the fields of particle detection, biomedicine and electromagnetic-radiation source. Recently, metamaterials demonstrate their novel mechanical, acoustic, and optical properties by delicately designing the structures and materials. In metamaterials, the electromagnetic properties, such as wave propagation, coupling, and radiation, could be flexibly manipulated. Thus, it is expected that the combination of vacuum electronics and micro- & nano-photonics would result in numerous novel phenomena and effects by having free electrons interacting with metamaterials. In this paper, we firstly review the concept and generation mechanism of CR. Then, recent research advances in the CR generation by using different types of metamaterials are reviewed, including threshold-less CR in hyperbolic metamaterials, reverse CR in negative metamaterials, CR lasing based on high Q-factor metamaterials and Smith-Purcell radiation manipulation with metasurfaces. The unique characteristics and interesting mechanisms of CR based on these metamaterials are elaborated. The research and development of interaction between free electrons and various metamaterials open up possibilities for realizing novel integrated free-electron devices.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114]
Catalog
Metrics
- Abstract views:9877
- PDF Downloads:412
- Cited By:0