Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Ye Peng
PDF
HTML
Get Citation
  • In the presence of symmetry-protection, topological invariants of topological phases of matter in free fermion systems, e.g., topological band insulators, can be directly computed via the properties of band structure. Nevertheless, it is usually difficult to extract topological invariants in strongly-correlated topological phases of matter in which band structure is not well-defined. One typical example is the fractional quantum Hall effect whose low-energy physics is governed by Chern-Simons topological gauge theory and Hall conductivity plateaus involve extremely fruitful physics of strong correlation. In this article, we focus on intrinsic topological order (iTO), symmetry-protected topological phases (SPT), and symmetry-enriched topological phases (SET) in boson and spin systems. Through gauge field-theoretical approach, we review some research progress on these topological phases of matter from the aspects of projective construction, low-energy effective theory and topological response theory.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

    • 拟设 完全被$f_1$填充的陈-能带 完全被$f_2$填充的陈-能带 自旋矢量$q^T_s$ 电荷矢量$q^T_c$
      $A1$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\left(\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}\right)$ $(1~~1~~1~~1~~1~~1~~1~~1)$
      $A2$ $\uparrow+, \downarrow-$ $(1, 1)$ $\uparrow+, \downarrow-$ $(1, 1)$ $\left( {1}/{2}~~- {1}/{2}~~ {1}/{2}~~ -{1}/{2}\right)$ $(1~~1~~1~~1)$
      $A3$ $\uparrow+, \downarrow-$ $(1, 1)$ $\downarrow+, \uparrow-$ $(1, 1)$ $\left(1/{2}~~- {1}/{2}~~- {1}/{2}~~ {1}/{2}\right)$ $(1~~1~~1~~1)$
      $A4$ $\uparrow+, \downarrow-$ $(1, 1)$ $\left( {1}/{2}~~- {1}/{2}\right)$ $(1~~1)$
      DownLoad: CSV

      U 任意一个格点上的物理希尔伯特空间基矢$ [f_1]n_{i, 1 \uparrow}, n_{i, 1 \downarrow}, n_{i, 2 \uparrow}, n_{i, 2 \downarrow}[f_2] $ 费米子填充总数要求
      $U_1$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}=N^{f2} $
      $U_2$ $(0, 0, 0, 0)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 1, 1, 1)\, $ $N^{f1}_{\uparrow} = N^{f2}_{\downarrow}, $ $N^{f1}_{\downarrow}=N^{f2}_{\uparrow}$
      $U_3$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}_{ \uparrow}=N^{f2}_{ \uparrow}, $ $N^{f1}_{ \downarrow}=N^{f2}_{\downarrow}$
      $U_4$ $(0, 0, 1, 1)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 0, 0)$ $N^{f1}_{\uparrow}+N^{f2}_{\downarrow}=N_{\rm latt}$, $N^{f2}_{\uparrow}+ N^{f1}_{\downarrow}=N_{\rm att}$
      $U_5$ $(1, 0, 0, 0)$, $(0, 1, 0, 0)$, $(0, 0, 1, 0)$, $(0, 0, 0, 1)$ $ N^{f1} + N^{f2}=N_{\rm latt}$
      $U_6$ $(1, 0)$, $(0, 1)$ $ N^{f1} =N_{\rm latt}$
      $U_7$ $(0, 0)$, $(1, 1)$ $N^{f1}_{\uparrow} = N^{f1}_{\downarrow }$
      DownLoad: CSV

      对称群G 拓扑规范场论与分类
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_1\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^2~~(\mathbb{Z}_{N_{12}} )$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_2\displaystyle\int a^2\wedge a^1\wedge \, {\rm d}a^1 ~(\mathbb{Z}_{N_{12}}) $
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times\mathbb{Z}_{N_3} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_1 \displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~(\mathbb{Z}_{N_{123}})$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_2 \displaystyle\int a^2\wedge a^3\wedge \, {\rm d}a^1~~(\mathbb{Z}_{N_{123}}) $
      $\prod^4_I\mathbb{Z}_{N_I} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^4_Ib^I\wedge \, {\rm d}a^I+p \displaystyle\int a^1\wedge a^2\wedge a^3\wedge a^4~~ ( \mathbb{Z}_{N_{1234}} )$
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times {U}(1)$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+p\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~ (\mathbb{Z}_{N_{12}})$
      DownLoad: CSV

      规范群$G_g$ twisted拓扑项 对称群$G_s$ SET分类
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 n + 1}$ ${{\mathbb{Z}}_1}$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 n}$ $ {({\mathbb{Z}}_2)^2}\oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_3$ ${\mathbb{Z}}_{3 n}$ $({\mathbb{Z}}_3)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_3$ ${\mathbb{Z}}_{3 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n+2}$ $ ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n}$ $ ({\mathbb{Z}}_4)^2\oplus ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1 $
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2\oplus 2({\mathbb{Z}}_4)^2\oplus4({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^6$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n + 1}$ $({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n + 1)})^2$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_{\gcd(2 m + 1, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n)})^2 $
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\times({\mathbb{Z}}_{2\gcd(m, n)})^2\oplus ({\mathbb{Z}}_{2\gcd(2 m, n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, n)})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2 n + 1} \times {\mathbb{Z}}_{2 n + 1}$ $16({\mathbb{Z}}_{2 n + 1})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2(2 n + 1)} \times {\mathbb{Z}}_{2(2 n + 1)}$ $4({\mathbb{Z}}_2)^6 \times ({\mathbb{Z}}_{2(2 n + 1)})^2\oplus 12({\mathbb{Z}}_{2(2 n + 1)})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n} \times {\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_4)^6 \times ({\mathbb{Z}}_{4 n})^2\oplus 12({\mathbb{Z}}_{4 n})^2 \oplus 3[ ({\mathbb{Z}}_{4 n})^2\times ({\mathbb{Z}}_2)^6]$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}\oplus 6({\mathbb{Z}}_2)^8 \oplus 3({\mathbb{Z}}_2)^6 \oplus 6({\mathbb{Z}}_2)^4$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$
      DownLoad: CSV

      投影对称群(PSG) 规范群$G_g$ 对称群$G_s$ 三维体内($\varSigma^3$)
      的规范理论
      表面($\partial\varSigma^3$)的反常
      玻色理论
      二维平面($\varSigma^2$)的正常Chern-Simons理论的$K_G$-矩阵
      ${\mathbb{Z}}_N \rtimes{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
      $\dfrac{\theta_c}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^c_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}^T_2$破缺的 $\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$
      ${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
      $\left(\begin{array}{*{20}{c}} {2 p}&N\\ N&0 \end{array}\right)$
      ${\mathbb{Z}}_N\!\times\!{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_s}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^s_\rho$
      ${\mathbb{Z}}^T_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p &N \\ N & 0 \end{array}} \right)$
      ${\mathbb{Z}}_N \!\times\! [U(1)_{S^z}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_N\!\times\! U(1)_{S^z}$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c +$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p_1 &N & p_{12}& 0\\ N & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & 0\\ 0 & 0 &0 & 0 \end{array}} \right)$
      $U(1)_C \!\times\! [{\mathbb{Z}}_N \rtimes{\mathbb{Z}}_2]$ $U(1)_C\!\times\!{\mathbb{Z}}_N$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p_1 &0 & p_{12}& 0\\ 0 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N\\ 0 & 0 &N & 0 \end{array}} \right)$
      ${\mathbb{Z}}_{N_1} \!\times\! [{\mathbb{Z}}_{N_2}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_{N_1}\!\times\! {\mathbb{Z}}_{N_2}$ ${\mathbb{Z}}_2$ $\dfrac{N_1}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
      $\dfrac{N_2}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N_1}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j+$
      $\dfrac{N_2}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $\begin{aligned} & {}\\ & \left({\begin{array}{*{20}{c}} 2 p_1 &N_1 & p_{12}& 0\\ N_1 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N_2\\ 0 & 0 &N_2 & 0 \end{array}} \right)\end{aligned}$
      DownLoad: CSV

      轴子角 对称群 三维体内($\varSigma^3$)的响应 二维表面($\partial\varSigma^3$)的反常响应 二维平面($\varSigma^2$)的响应
      $ \theta_c=2{\text{π}}+4{\text{π}} k$
      (带电玻色系统)
      $U(1)_C\rtimes{\mathbb{Z}}^{\rm T}_2$ 电荷-威腾效应:
      $N^c=n^c+N^c_m$
      量子电荷霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
      $\widetilde{\sigma}^{c}=(1+2 k)\dfrac{1}{2{\text{π}}}$
      量子电荷霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
      $\sigma^c=2 k\dfrac{1}{2{\text{π}}}$
      $ \theta_s=2{\text{π}}+4{\text{π}} k$
      (整数自旋的
      玻色系统)
      $U(1)_{S^z} \times {\mathbb{Z}}^{\rm T}_2$ 自旋-威腾效应:
      $N^s=\displaystyle \sum_i q_in_i^s+N^s_m\sum_{i}q_i^2$
      量子自旋霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
      $\widetilde{\sigma}^{s}=(1+2 k)\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$
      量子自旋霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
      $\sigma^s=2 k\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$
      $ \theta_0={\text{π}}+2{\text{π}} k$
      (带电和整数自旋
      的玻色系统)
      $U(1)_C \!\times\! [U(1)_{S^z} \!\rtimes\! {\mathbb{Z}}_2]$ 交互-威腾效应: $N^c=n^c+\dfrac{1}{2}N^s_m$;
      $N^s=n^s_{+}-n^s_{-}+\dfrac{1}{2}N^c_m$
      量子电荷-自旋/
      自旋-电荷效应
      (${\mathbb{Z}}_2$破缺的 $\partial\varSigma^3$):
      $\widetilde{\sigma}^{cs}=\widetilde{\sigma}^{sc}=\left(\dfrac 1 2+k\right)\dfrac{1}{2{\text{π}}}$
      量子电荷-自旋/
      效应 自旋-电荷
      (${\mathbb{Z}}_2$破缺的$\varSigma^2$):
      $\sigma^{cs}=\sigma^{sc}=k\dfrac{1}{2{\text{π}}}$
      DownLoad: CSV

      时空维度 空间对称群$G_s$ 内部对称群$G_i$ 不可约的Wen-Zee拓扑项$S$ 角动量/自旋${\cal{J}}$
      $(2 + 1)$维 $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$
      $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$, $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$
      $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} $ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A^1 \wedge A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^2} A^1 \wedge A^2$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int _{M^3} A \wedge {\rm d}A$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int A \wedge \omega \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{2{\text{π}}^2 N_{01}} \displaystyle\int_{M^3} A \wedge {\rm d}\omega$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times U(1)$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$
      $(3 + 1)$维 $SO(2)$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int A^1 \wedge A^2 \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{12}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int_{M^3} {\rm d} (A^1 \wedge A^2)$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int \omega \wedge A^2 \wedge {\rm d}A^1$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int_{M^3} A^2 \wedge {\rm d}A^1$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3}$ $k \dfrac{N_0 N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int \omega \wedge A^1 \wedge A^2 \wedge A^3$,
      $k \in \mathbb{Z}_{N_{0123}}$
      $k \dfrac{ N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int_{M^3} A^1 \wedge A^2 \wedge A^3$
      $(3 + 1)$维($*$) $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$
      $(3 + 1)$维($*$) $C_{N_0}$ ${\mathbb{Z}}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}_{N_{01}}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$
      $(3 + 1)$维($*$) $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A \wedge B$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^3} A \wedge B$
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

    • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping.Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203.doi:10.7498/aps.73.20231519
      [2] Liu En-Ke.Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103.doi:10.7498/aps.73.20231711
      [3] Gu Zhao-Long, Li Jian-Xin.Topological order and fractionalized excitations in quantum many-body systems. Acta Physica Sinica, 2024, 73(7): 070301.doi:10.7498/aps.73.20240222
      [4] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping.Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204.doi:10.7498/aps.72.20231321
      [5] Hu Jun-Rong, Kong Peng, Bi Ren-Gui, Deng Ke, Zhao He-Ping.Topological corner states in acoustic honeycomb structure. Acta Physica Sinica, 2022, 71(5): 054301.doi:10.7498/aps.71.20211848
      [6] Wang Wei, Wang Yi-Ping.Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203.doi:10.7498/aps.71.20220675
      [7] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu.Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302.doi:10.7498/aps.71.20211433
      [8] Qiang Xiao-Bin, Lu Hai-Zhou.Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201.doi:10.7498/aps.70.20200914
      [9] .A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): .doi:10.7498/aps.70.20211433
      [10] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian.Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301.doi:10.7498/aps.69.20191627
      [11] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin.Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101.doi:10.7498/aps.69.20200415
      [12] .Quantum Transport in Topological Matters under Magnetic Fields. Acta Physica Sinica, 2020, (): .doi:10.7498/aps.69.20200914
      [13] Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao.Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, 2020, 69(11): 117102.doi:10.7498/aps.69.20190959
      [14] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long.Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201.doi:10.7498/aps.69.20200542
      [15] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng.Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302.doi:10.7498/aps.69.20191773
      [16] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun.Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805.doi:10.7498/aps.68.20191363
      [17] Luo Kai-Fa, Yu Rui.Topological states in electric circuit. Acta Physica Sinica, 2019, 68(22): 220305.doi:10.7498/aps.68.20191398
      [18] Chen Xi-Hao, Wang Xiu-Juan.Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301.doi:10.7498/aps.67.20180855
      [19] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei.Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, 2017, 66(22): 220201.doi:10.7498/aps.66.220201
      [20] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui.Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303.doi:10.7498/aps.66.127303
    Metrics
    • Abstract views:19573
    • PDF Downloads:807
    • Cited By:0
    Publishing process
    • Received Date:10 February 2020
    • Accepted Date:10 March 2020
    • Published Online:05 April 2020

      返回文章
      返回
        Baidu
        map