-
In the presence of symmetry-protection, topological invariants of topological phases of matter in free fermion systems, e.g., topological band insulators, can be directly computed via the properties of band structure. Nevertheless, it is usually difficult to extract topological invariants in strongly-correlated topological phases of matter in which band structure is not well-defined. One typical example is the fractional quantum Hall effect whose low-energy physics is governed by Chern-Simons topological gauge theory and Hall conductivity plateaus involve extremely fruitful physics of strong correlation. In this article, we focus on intrinsic topological order (iTO), symmetry-protected topological phases (SPT), and symmetry-enriched topological phases (SET) in boson and spin systems. Through gauge field-theoretical approach, we review some research progress on these topological phases of matter from the aspects of projective construction, low-energy effective theory and topological response theory.
-
Keywords:
- strongly-correlated system/
- topological order/
- symmetry-protected topological state/
- topological quantum field theory
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] -
拟设 完全被$f_1$填充的陈-能带 完全被$f_2$填充的陈-能带 自旋矢量$q^T_s$ 电荷矢量$q^T_c$ $A1$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\left(\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}\right)$ $(1~~1~~1~~1~~1~~1~~1~~1)$ $A2$ $\uparrow+, \downarrow-$ $(1, 1)$ $\uparrow+, \downarrow-$ $(1, 1)$ $\left( {1}/{2}~~- {1}/{2}~~ {1}/{2}~~ -{1}/{2}\right)$ $(1~~1~~1~~1)$ $A3$ $\uparrow+, \downarrow-$ $(1, 1)$ $\downarrow+, \uparrow-$ $(1, 1)$ $\left(1/{2}~~- {1}/{2}~~- {1}/{2}~~ {1}/{2}\right)$ $(1~~1~~1~~1)$ $A4$ $\uparrow+, \downarrow-$ $(1, 1)$ 无 $\left( {1}/{2}~~- {1}/{2}\right)$ $(1~~1)$ U 任意一个格点上的物理希尔伯特空间基矢$ [f_1]n_{i, 1 \uparrow}, n_{i, 1 \downarrow}, n_{i, 2 \uparrow}, n_{i, 2 \downarrow}[f_2] $ 费米子填充总数要求 $U_1$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}=N^{f2} $ $U_2$ $(0, 0, 0, 0)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 1, 1, 1)\, $ $N^{f1}_{\uparrow} = N^{f2}_{\downarrow}, $ $N^{f1}_{\downarrow}=N^{f2}_{\uparrow}$ $U_3$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}_{ \uparrow}=N^{f2}_{ \uparrow}, $ $N^{f1}_{ \downarrow}=N^{f2}_{\downarrow}$ $U_4$ $(0, 0, 1, 1)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 0, 0)$ $N^{f1}_{\uparrow}+N^{f2}_{\downarrow}=N_{\rm latt}$, $N^{f2}_{\uparrow}+ N^{f1}_{\downarrow}=N_{\rm att}$ $U_5$ $(1, 0, 0, 0)$, $(0, 1, 0, 0)$, $(0, 0, 1, 0)$, $(0, 0, 0, 1)$ $ N^{f1} + N^{f2}=N_{\rm latt}$ $U_6$ $(1, 0)$, $(0, 1)$ $ N^{f1} =N_{\rm latt}$ $U_7$ $(0, 0)$, $(1, 1)$ $N^{f1}_{\uparrow} = N^{f1}_{\downarrow }$ 对称群G 拓扑规范场论与分类 $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_1\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^2~~(\mathbb{Z}_{N_{12}} )$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_2\displaystyle\int a^2\wedge a^1\wedge \, {\rm d}a^1 ~(\mathbb{Z}_{N_{12}}) $ $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times\mathbb{Z}_{N_3} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_1 \displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~(\mathbb{Z}_{N_{123}})$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_2 \displaystyle\int a^2\wedge a^3\wedge \, {\rm d}a^1~~(\mathbb{Z}_{N_{123}}) $ $\prod^4_I\mathbb{Z}_{N_I} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^4_Ib^I\wedge \, {\rm d}a^I+p \displaystyle\int a^1\wedge a^2\wedge a^3\wedge a^4~~ ( \mathbb{Z}_{N_{1234}} )$ $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times {U}(1)$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+p\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~ (\mathbb{Z}_{N_{12}})$ 规范群$G_g$ twisted拓扑项 对称群$G_s$ SET分类 ${\mathbb{Z}}_2$ – ${\mathbb{Z}}_{2 n + 1}$ ${{\mathbb{Z}}_1}$ ${\mathbb{Z}}_2$ – ${\mathbb{Z}}_{2 n}$ $ {({\mathbb{Z}}_2)^2}\oplus {\mathbb{Z}}_1$ ${\mathbb{Z}}_3$ – ${\mathbb{Z}}_{3 n}$ $({\mathbb{Z}}_3)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1$ ${\mathbb{Z}}_3$ – ${\mathbb{Z}}_{3 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{4 n+2}$ $ ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{4 n}$ $ ({\mathbb{Z}}_4)^2\oplus ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1 $ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2\oplus 2({\mathbb{Z}}_4)^2\oplus4({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^6$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$ ${\mathbb{Z}}_2$ – ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n + 1}$ $({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n + 1)})^2$ ${\mathbb{Z}}_2$ – ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_{\gcd(2 m + 1, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n)})^2 $ ${\mathbb{Z}}_2$ – ${\mathbb{Z}}_{2 m} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\times({\mathbb{Z}}_{2\gcd(m, n)})^2\oplus ({\mathbb{Z}}_{2\gcd(2 m, n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, n)})^2$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{2 n + 1} \times {\mathbb{Z}}_{2 n + 1}$ $16({\mathbb{Z}}_{2 n + 1})^2$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{2(2 n + 1)} \times {\mathbb{Z}}_{2(2 n + 1)}$ $4({\mathbb{Z}}_2)^6 \times ({\mathbb{Z}}_{2(2 n + 1)})^2\oplus 12({\mathbb{Z}}_{2(2 n + 1)})^2$ ${\mathbb{Z}}_4$ – ${\mathbb{Z}}_{4 n} \times {\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_4)^6 \times ({\mathbb{Z}}_{4 n})^2\oplus 12({\mathbb{Z}}_{4 n})^2 \oplus 3[ ({\mathbb{Z}}_{4 n})^2\times ({\mathbb{Z}}_2)^6]$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}\oplus 6({\mathbb{Z}}_2)^8 \oplus 3({\mathbb{Z}}_2)^6 \oplus 6({\mathbb{Z}}_2)^4$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$ ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$ 投影对称群(PSG) 规范群$G_g$ 对称群$G_s$ 三维体内($\varSigma^3$)
的规范理论表面($\partial\varSigma^3$)的反常
玻色理论二维平面($\varSigma^2$)的正常Chern-Simons理论的$K_G$-矩阵 ${\mathbb{Z}}_N \rtimes{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
$\dfrac{\theta_c}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^c_\nu \partial_\lambda A^c_\rho$${\mathbb{Z}}^T_2$破缺的 $\partial\varSigma^3$:
$\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
$\left(\begin{array}{*{20}{c}} {2 p}&N\\ N&0 \end{array}\right)$${\mathbb{Z}}_N\!\times\!{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
$\dfrac{\theta_s}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^s_\rho$${\mathbb{Z}}^T_2$破缺的$\partial\varSigma^3$:
$\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
$ \left({\begin{array}{*{20}{c}} 2 p &N \\ N & 0 \end{array}} \right)$${\mathbb{Z}}_N \!\times\! [U(1)_{S^z}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_N\!\times\! U(1)_{S^z}$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c +$
$\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
$\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$${\mathbb{Z}}_2$破缺的$\varSigma^2$:
$ \left({\begin{array}{*{20}{c}} 2 p_1 &N & p_{12}& 0\\ N & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & 0\\ 0 & 0 &0 & 0 \end{array}} \right)$$U(1)_C \!\times\! [{\mathbb{Z}}_N \rtimes{\mathbb{Z}}_2]$ $U(1)_C\!\times\!{\mathbb{Z}}_N$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
$\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
$\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$${\mathbb{Z}}_2$破缺的$\varSigma^2$:
$ \left({\begin{array}{*{20}{c}} 2 p_1 &0 & p_{12}& 0\\ 0 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N\\ 0 & 0 &N & 0 \end{array}} \right)$${\mathbb{Z}}_{N_1} \!\times\! [{\mathbb{Z}}_{N_2}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_{N_1}\!\times\! {\mathbb{Z}}_{N_2}$ ${\mathbb{Z}}_2$ $\dfrac{N_1}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
$\dfrac{N_2}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
$\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
$\dfrac{N_1}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j+$
$\dfrac{N_2}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$${\mathbb{Z}}_2$破缺的$\varSigma^2$:
$\begin{aligned} & {}\\ & \left({\begin{array}{*{20}{c}} 2 p_1 &N_1 & p_{12}& 0\\ N_1 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N_2\\ 0 & 0 &N_2 & 0 \end{array}} \right)\end{aligned}$轴子角 对称群 三维体内($\varSigma^3$)的响应 二维表面($\partial\varSigma^3$)的反常响应 二维平面($\varSigma^2$)的响应 $ \theta_c=2{\text{π}}+4{\text{π}} k$
(带电玻色系统)$U(1)_C\rtimes{\mathbb{Z}}^{\rm T}_2$ 电荷-威腾效应:
$N^c=n^c+N^c_m$量子电荷霍尔效应
(${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
$\widetilde{\sigma}^{c}=(1+2 k)\dfrac{1}{2{\text{π}}}$量子电荷霍尔效应
(${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
$\sigma^c=2 k\dfrac{1}{2{\text{π}}}$$ \theta_s=2{\text{π}}+4{\text{π}} k$
(整数自旋的
玻色系统)$U(1)_{S^z} \times {\mathbb{Z}}^{\rm T}_2$ 自旋-威腾效应:
$N^s=\displaystyle \sum_i q_in_i^s+N^s_m\sum_{i}q_i^2$量子自旋霍尔效应
(${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
$\widetilde{\sigma}^{s}=(1+2 k)\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$量子自旋霍尔效应
(${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
$\sigma^s=2 k\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$$ \theta_0={\text{π}}+2{\text{π}} k$
(带电和整数自旋
的玻色系统)$U(1)_C \!\times\! [U(1)_{S^z} \!\rtimes\! {\mathbb{Z}}_2]$ 交互-威腾效应: $N^c=n^c+\dfrac{1}{2}N^s_m$;
$N^s=n^s_{+}-n^s_{-}+\dfrac{1}{2}N^c_m$量子电荷-自旋/
自旋-电荷效应
(${\mathbb{Z}}_2$破缺的 $\partial\varSigma^3$):
$\widetilde{\sigma}^{cs}=\widetilde{\sigma}^{sc}=\left(\dfrac 1 2+k\right)\dfrac{1}{2{\text{π}}}$量子电荷-自旋/
效应 自旋-电荷
(${\mathbb{Z}}_2$破缺的$\varSigma^2$):
$\sigma^{cs}=\sigma^{sc}=k\dfrac{1}{2{\text{π}}}$时空维度 空间对称群$G_s$ 内部对称群$G_i$ 不可约的Wen-Zee拓扑项$S$ 角动量/自旋${\cal{J}}$ $(2 + 1)$维 $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$ $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$, $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$ $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} $ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A^1 \wedge A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^2} A^1 \wedge A^2$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int _{M^3} A \wedge {\rm d}A$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int A \wedge \omega \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{2{\text{π}}^2 N_{01}} \displaystyle\int_{M^3} A \wedge {\rm d}\omega$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times U(1)$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$ $(3 + 1)$维 $SO(2)$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int A^1 \wedge A^2 \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{12}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int_{M^3} {\rm d} (A^1 \wedge A^2)$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int \omega \wedge A^2 \wedge {\rm d}A^1$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int_{M^3} A^2 \wedge {\rm d}A^1$ $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3}$ $k \dfrac{N_0 N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int \omega \wedge A^1 \wedge A^2 \wedge A^3$,
$k \in \mathbb{Z}_{N_{0123}}$$k \dfrac{ N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int_{M^3} A^1 \wedge A^2 \wedge A^3$ $(3 + 1)$维($*$) $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$ $(3 + 1)$维($*$) $C_{N_0}$ ${\mathbb{Z}}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}_{N_{01}}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$ $(3 + 1)$维($*$) $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A \wedge B$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^3} A \wedge B$ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222]
Catalog
Metrics
- Abstract views:19572
- PDF Downloads:807
- Cited By:0