\begin{document}$C_{{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$\end{document}, \begin{document}$ 5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$\end{document}, and \begin{document}$1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$\end{document}. In addition, the turbulence phase extraction capability of CNN can be further enhanced by improving computing power or optimizing model structure. These results indicate that the CNN-based turbulence phase extraction method can effectively extract the turbulence phase, which has important application value in turbulence compensation, atmospheric turbulence characteristics research and image reconstruction."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:12400
    • PDF Downloads:339
    • Cited By:0
    Publishing process
    • Received Date:28 June 2019
    • Accepted Date:15 October 2019
    • Published Online:05 January 2020

      返回文章
      返回
        Baidu
        map