γ spectrometer is studied. We convert γ spectrometer measurement objects into a four-layer theoretical model, which are attenuation thickness + radioactive hot area + attenuation thickness + disturb source. Then, the source item layer is virtualized into a point source by using virtual technology. So, the theoretical model is further simplified. Then the detection efficiency and peak/valley ratio parameter of source term are simulated by Monte Carlo method. Finally, the source term parameters are retrieved by using the least square method, and thus establishing the theoretical method and procedure of inversion calculation of source boundary parameters. In this paper, the theoretical and experimental results are shown to be consistent with each other. So, this method is verified to be correct and practicable. Currently, the method can accurately determine the depth distribution parameters of radioactive contamination area for uniformly distributed radio nuclides. In conclusion, the technical achievements can be used to accurately determine the boundary range of the radioactive hot zone, thus realizing the purpose of reducing the waste disposal capacity during the treatment. At the same time, the determination of the inert layer thickness parameters of the target nuclear warhead of Nuclear Test Ban Treaty has a significant reference value."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie
    PDF
    HTML
    Get Citation
    • In the in situ γspectrometer based measurement of " hot particular”, " radioactive collection point” and " radioactive collection area”, only the position of the pollution source can be located roughly, but its boundary parameters such as the thickness of pollution source cannot be given. In this paper, the application of virtual technology to the scanning of γspectrometer is studied. We convert γspectrometer measurement objects into a four-layer theoretical model, which are attenuation thickness + radioactive hot area + attenuation thickness + disturb source. Then, the source item layer is virtualized into a point source by using virtual technology. So, the theoretical model is further simplified. Then the detection efficiency and peak/valley ratio parameter of source term are simulated by Monte Carlo method. Finally, the source term parameters are retrieved by using the least square method, and thus establishing the theoretical method and procedure of inversion calculation of source boundary parameters. In this paper, the theoretical and experimental results are shown to be consistent with each other. So, this method is verified to be correct and practicable. Currently, the method can accurately determine the depth distribution parameters of radioactive contamination area for uniformly distributed radio nuclides. In conclusion, the technical achievements can be used to accurately determine the boundary range of the radioactive hot zone, thus realizing the purpose of reducing the waste disposal capacity during the treatment. At the same time, the determination of the inert layer thickness parameters of the target nuclear warhead of Nuclear Test Ban Treaty has a significant reference value.
          Corresponding author:Tian Zi-Ning,tzn1019@126.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11405134)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

      • 测量对象 测量时长t/105s N241(54—57 keV) N241(59.54 keV) N239(51.62, 129 keV) A/104Bq
        241Am 239Pu
        探测模式1 3.16 4325136 25339979
        239Pu体源 2.00 75248200 239711, 52717 4.56 18.7
        DownLoad: CSV

        测量对象 测量时长t/105s N241(26.4 keV) N241(54—57 keV) N241(59.54 keV) A/× 104Bq
        26.4 keV 59.54 keV
        探测模式2 4.00 240050 9531180 65964536 8.16 8.91
        241Am点源 0.565 4160024 65331456 7.74 8.38
        241Am体源 0.800 45346 2745773 0.423 0.532
        DownLoad: CSV

        h/cm ${\varepsilon _{241}}(h)$/10–3 ${\varepsilon _{239}}(h)$/10–3 A241/104Bq A239/105Bq Q ${N}/{ { {N_{\rm v}} } }(h)$
        –1.25 24.3 24.6 0.921 0.497 5.4 8.05
        –1.60 17.9 19.5 1.24 0.629 5.0 6.99
        –2.00 12.9 15.1 1.73 0.810 4.7 6.12
        –2.40 9.45 11.9 2.36 1.03 4.4 5.44
        –2.80 7.00 9.45 3.19 1.30 4.1 4.92
        –3.20 5.24 7.60 4.26 1.61 3.8 4.51
        –3.60 3.97 6.16 5.62 1.98 3.5 4.18
        –3.80 3.47 5.56 6.45 2.20 3.4 4.04
        –4.00 3.03 5.04 7.37 2.43 3.3 3.90
        DownLoad: CSV

        w h/cm $\varepsilon (h)$/10–3 ${\varepsilon ^*}(h)$/10–3 ${N}/{ { {N_{\rm v}} } }(h)$ X2/10–3 X3/10–3 X1 $\sigma (X)$
        0.10 –1.25 24.3 24.6 8.05
        0.90 –3.20 5.24 7.60 4.51 7.15 9.30 4.87 0.177
        0.90 –3.60 3.97 6.16 4.18 6.00 8.01 4.56 0.308
        0.90 –3.80 3.47 5.56 4.04 5.55 7.47 4.44 0.385
        0.90 –4.00 3.03 5.04 3.90 5.16 6.99 4.31 0.458
        0.10 –1.60 17.9 19.5 6.99
        0.90 –3.20 5.24 7.60 4.51 6.51 8.79 4.76 0.217
        0.90 –3.60 3.97 6.16 4.18 5.36 7.50 4.46 0.396
        0.90 –3.80 3.47 5.56 4.04 4.91 6.96 4.33 0.479
        0.90 –4.00 3.03 5.04 3.90 4.52 6.48 4.21 0.554
        0.10 –2.00 12.9 15.1 6.12
        0.90 –3.20 5.24 7.60 4.51 6.01 8.35 4.67 0.277
        0.90 –3.60 3.97 6.16 4.18 4.86 7.06 4.37 0.474
        0.90 –3.80 3.47 5.56 4.04 4.41 6.52 4.24 0.559
        0.90 –4.00 3.03 5.04 3.90 4.02 6.04 4.12 0.635
        0.10 –2.40 9.45 11.9 5.44
        0.90 –3.20 5.24 7.60 4.51 5.66 8.03 4.61 0.327
        0.90 –3.60 3.97 6.16 4.18 4.52 6.74 4.30 0.530
        0.90 –3.80 3.47 5.56 4.04 4.06 6.20 4.18 0.616
        0.90 –4.00 3.03 5.04 3.90 3.67 5.72 4.05 0.693
        DownLoad: CSV

        h/cm w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$
        –1.25 0.10 0.20 0.30 0.40 0.50
        –3.20 0.90 0.177 0.80 0.355 0.70 0.664 0.60 0.988 0.50 1.32
        –3.60 0.90 0.308 0.80 0.223 0.70 0.508 0.60 0.848 0.50 1.20
        –3.80 0.90 0.385 0.80 0.201 0.70 0.448 0.60 0.792 0.50 1.15
        –4.00 0.90 0.458 0.80 0.210 0.70 0.399 0.60 0.744 0.50 1.11
        –1.60 0.10 0.20 0.30 0.40 0.50
        –3.20 0.90 0.217 0.80 0.195 0.70 0.360 0.60 0.568 0.50 0.784
        –3.60 0.90 0.396 0.80 0.210 0.70 0.234 0.60 0.435 0.50 0.669
        –3.80 0.90 0.479 0.80 0.262 0.70 0.203 0.60 0.384 0.50 0.622
        –4.00 0.90 0.554 0.80 0.318 0.70 0.196 0.60 0.343 0.50 0.583
        –2.00 0.10 0.20 0.30 0.40 0.50
        –3.20 0.90 0.277 0.80 0.187 0.70 0.177 0.60 0.256 0.50 0.371
        –3.60 0.90 0.474 0.80 0.328 0.70 0.210 0.60 0.181 0.50 0.272
        –3.80 0.90 0.559 0.80 0.399 0.70 0.257 0.60 0.178 0.50 0.238
        –4.00 0.90 0.635 0.80 0.465 0.70 0.307 0.60 0.193 0.50 0.215
        –2.40 0.10 0.20 0.30 0.40 0.50
        –3.20 0.90 0.327 0.80 0.264 0.70 0.209 0.60 0.173 0.50 0.167
        –3.60 0.90 0.530 0.80 0.435 0.70 0.344 0.60 0.261 0.50 0.195
        –3.80 0.90 0.616 0.80 0.510 0.70 0.407 0.60 0.309 0.50 0.225
        –4.00 0.90 0.693 0.80 0.577 0.70 0.464 0.60 0.356 0.50 0.257
        DownLoad: CSV
        h/cm w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$
        –1.25 0.60 0.70 0.80 0.9
        –3.20 0.40 1.65 0.30 1.98 0.20 2.31 0.10 2.64
        –3.60 0.40 1.55 0.30 1.90 0.20 2.26 0.10 2.61
        –3.80 0.40 1.51 0.30 1.88 0.20 2.24 0.10 2.60
        –4.00 0.40 1.48 0.30 1.85 0.20 2.22 0.10 2.60
        –1.60 0.60 0.70 0.80 0.90
        –3.20 0.40 1.00 0.30 1.23 0.20 1.45 0.10 1.67
        –3.60 0.40 0.910 0.30 1.16 0.20 1.40 0.10 1.65
        –3.80 0.40 0.872 0.30 1.13 0.20 1.38 0.10 1.64
        –4.00 0.40 0.839 0.30 1.10 0.20 1.37 0.10 1.63
        –2.00 0.60 0.70 0.80 0.90
        –3.20 0.40 0.498 0.30 0.630 0.20 0.763 0.10 0.898
        –3.60 0.40 0.410 0.30 0.561 0.20 0.716 0.10 0.875
        –3.80 0.40 0.375 0.30 0.533 0.20 0.698 0.10 0.865
        –4.00 0.40 0.347 0.30 0.509 0.20 0.681 0.10 0.857
        –2.40 0.60 0.70 0.80 0.90
        –3.20 0.40 0.194 0.30 0.244 0.20 0.305 0.10 0.372
        –3.60 0.40 0.169 0.30 0.199 0.20 0.267 0.10 0.351
        –3.80 0.40 0.174 0.30 0.186 0.20 0.252 0.10 0.342
        –4.00 0.40 0.186 0.30 0.178 0.20 0.240 0.10 0.335
        DownLoad: CSV

        hV/cm 体源厚度/cm $\varepsilon ({h_{\rm{V}}})$
        /10–3
        ${\varepsilon ^*}({h_{\rm{V}}})$
        /10–2
        ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$ $\sigma (X)$
        –2.80 0.80 4.54 0.689 4.69 0.444
        –2.80 1.2 4.60 0.696 4.74 0.431
        –2.80 1.6 4.70 0.705 4.81 0.414
        –2.45 0.80 5.68 0.818 5.03 0.231
        –2.45 1.2 5.76 0.826 5.07 0.217
        –2.45 1.6 5.89 0.837 5.16 0.200
        –2.45 2.0 6.05 0.851 5.26 0.181
        –2.45 2.5 6.31 0.874 5.41 0.159
        –2.45 3.0 6.65 0.903 5.63 0.163
        –2.45 4.0 7.57 0.981 6.24 0.289
        –2.45 4.9 8.78 1.08 7.12 0.539
        –2.00 0.80 7.62 1.03 5.58 0.188
        –2.00 1.2 7.75 1.04 5.64 0.212
        –2.00 1.6 7.93 1.05 5.75 0.248
        –2.00 2.0 8.17 1.07 5.88 0.295
        –2.00 2.5 8.55 1.10 6.11 0.373
        –2.00 3.0 9.03 1.14 6.41 0.474
        –2.00 4.0 10.4 1.25 7.35 0.769
        –1.50 0.80 10.7 1.33 6.43 0.744
        –1.50 1.2 10.9 1.35 6.54 0.781
        –1.50 1.6 11.2 1.37 6.68 0.834
        –1.50 2.0 11.5 1.40 6.90 0.905
        –1.50 3.0 12.9 1.50 7.79 1.18
        –0.50 0.80 22.0 2.34 10.1 2.81
        DownLoad: CSV

        h/cm ${\varepsilon _{26.4\;{\rm{keV}}}}(h)$/10–3 ${\varepsilon _{59.54\;{\rm{keV}}}}(h)$/10–2 A26.4 keV/104Bq A59.54 keV/104Bq A59.54 keV/A26.4 keV ${N}/{ { {N_{\rm v}} } }(h)$
        0.80 48.200 14.4 0.0519 0.318 6.10 17.0
        0.40 13.500 8.79 0.1850 0.523 2.80 12.0
        0 4.060 5.56 0.6150 0.826 1.30 9.3
        –0.20 2.260 4.48 1.1100 1.030 0.90 8.4
        –0.40 1.270 3.64 1.9700 1.260 0.60 7.7
        –0.60 0.717 2.98 3.4900 1.540 0.40 7.1
        –0.80 0.409 2.45 6.1200 1.880 0.30 6.6
        DownLoad: CSV

        hV/cm 体源
        厚度/cm
        ${\varepsilon ^*}({h_{\rm{V}}})$/
        10–2
        $\varepsilon ({h_{\rm{V}}})$/
        10–3
        ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$ $\sigma (X)$ hV/cm 体源
        厚度/cm
        ${\varepsilon ^*}({h_{\rm{V}}})$/
        10–2
        $\varepsilon ({h_{\rm{V}}})$/
        10–3
        ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$ $\sigma (X)$
        0.75 1.00 3.54 10.4 11.90 1.5900 0.15 2.20 2.45 5.00 9.34 0.2310
        0.75 0.60 3.47 8.06 11.40 1.0100 0.15 1.60 2.31 2.69 8.54 0.3470
        0.75 0.30 3.44 7.23 11.20 0.8060 0.15 1.00 2.21 1.72 8.07 0.5920
        0.25 2.00 2.59 5.49 9.61 0.3530 0.15 0.40 2.17 1.32 7.86 0.6920
        0.25 1.90 2.56 4.91 9.44 0.2110 0 2.50 2.26 4.40 9.00 0.0900
        0.25 1.80 2.54 4.42 9.29 0.0890 0 2.45 2.24 4.14 8.90 0.0470
        0.25 1.70 2.51 4.00 9.14 0.0220 0 2.40 2.23 3.90 8.83 0.0640
        0.25 1.60 2.49 3.63 9.03 0.1090 0 2.00 2.13 2.52 8.30 0.3950
        0.25 1.50 2.47 3.32 8.92 0.1870 0 1.50 2.04 1.60 7.83 0.6260
        0.25 1.30 2.43 2.81 8.72 0.3130 0 1.00 1.97 1.13 7.54 0.7470
        0.25 0.80 2.37 2.04 8.38 0.5080 –0.25 1.10 1.65 0.602 6.86 0.8910
        –0.25 0.50 1.61 0.457 6.70 0.9300
        DownLoad: CSV

        h/cm w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$
        0.80 0.10 0.20 0.30 0.40 0.50
        –0.40 0.90 2.414 0.80 1.783 0.70 2.807 0.60 3.832 0.50 4.86
        –0.60 0.90 2.115 0.80 1.512 0.70 2.569 0.60 3.627 0.50 4.69
        –0.80 0.90 1.951 0.80 1.362 0.70 2.433 0.60 3.510 0.50 4.59
        0.40 0.10 0.20 0.30 0.40 0.50
        –0.40 0.90 0.466 0.80 0.291 0.70 0.529 0.60 0.780 0.50 1.03
        –0.60 0.90 0.177 0.80 0.119 0.70 0.286 0.60 0.567 0.50 0.857
        –0.80 0.90 0.185 0.80 0.245 0.70 0.175 0.60 0.447 0.50 0.753
        0 0.10 0.20 0.30 0.40 0.50
        –0.40 0.90 0.190 0.80 0.160 0.70 0.168 0.60 0.235 0.50 0.327
        –0.60 0.90 0.431 0.80 0.346 0.70 0.214 0.60 0.123 0.50 0.165
        –0.80 0.90 0.620 0.80 0.512 0.70 0.350 0.60 0.197 0.50 0.112
        DownLoad: CSV
        h/cm w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$ w $\sigma (X)$
        0.80 0.60 0.70 0.80 0.90
        –0.40 0.40 5.88 0.30 6.91 0.20 7.93 0.10 8.96
        –0.60 0.40 5.75 0.30 6.81 0.20 7.87 0.10 8.92
        –0.80 0.40 5.67 0.30 6.75 0.20 7.83 0.10 8.90
        0.40 0.60 0.70 0.80 0.90
        –0.40 0.40 1.29 0.30 1.55 0.20 1.80 0.10 2.06
        –0.60 0.40 1.15 0.30 1.44 0.20 1.73 0.10 2.03
        –0.80 0.40 1.06 0.30 1.38 0.20 1.69 0.10 2.01
        0 0.60 0.70 0.80 0.90
        –0.40 0.40 0.427 0.30 0.532 0.20 0.639 0.10 0.747
        –0.60 0.40 0.287 0.30 0.425 0.20 0.567 0.10 0.711
        –0.80 0.40 0.207 0.30 0.361 0.20 0.523 0.10 0.689
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

      • [1] Xun Zhi-Peng, Hao Da-Peng.Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401.doi:10.7498/aps.71.20211757
        [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo.Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101.doi:10.7498/aps.71.20212041
        [3] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng.In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901.doi:10.7498/aps.69.20200718
        [4] Tian Zi-Ning, Chen Wei, Han Bin, Tian Yan-Jie, Liu Wen-Biao, Feng Tian-Cheng, Ouyang Xiao-Ping.Study on the virtual source calibration technology based on the volume of radioactive gas source. Acta Physica Sinica, 2016, 65(6): 062901.doi:10.7498/aps.65.062901
        [5] Chen Yuan, Wang Xiao-Fang, Shao Guang-Chao.Characteristics and parameter optimization of electron beam radiography. Acta Physica Sinica, 2015, 64(15): 154101.doi:10.7498/aps.64.154101
        [6] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai.Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205.doi:10.7498/aps.63.244205
        [7] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang.Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401.doi:10.7498/aps.62.244401
        [8] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei.Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102.doi:10.7498/aps.61.234102
        [9] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi.A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101.doi:10.7498/aps.61.228101
        [10] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng.Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401.doi:10.7498/aps.60.126401
        [11] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao.Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017.doi:10.7498/aps.58.2011
        [12] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie.Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852.doi:10.7498/aps.58.2843
        [13] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng.Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591.doi:10.7498/aps.58.3584
        [14] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying.Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035.doi:10.7498/aps.57.6030
        [15] Lei Xiao-Wei, Zheng Bo, Ying He-Ping.A numerical study on the aging of two-dimensional spin systems. Acta Physica Sinica, 2007, 56(3): 1713-1718.doi:10.7498/aps.56.1713
        [16] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong.Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002.doi:10.7498/aps.55.1997
        [17] Wang Shi-Qi, Lian Gui-Jun, Xiong Guang-Cheng.Electronic transport properties and simulation of random resistor network in granular mixture system of La0.7Ca0.3MnO3 and CeO 2. Acta Physica Sinica, 2005, 54(8): 3815-3821.doi:10.7498/aps.54.3815
        [18] Wang Zhi-Jun, Dong Li-Fang, Shang Yong.Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885.doi:10.7498/aps.54.880
        [19] Wang Jian-Hua, Jin Chuan-En.Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122.doi:10.7498/aps.53.1116
        [20] Guo Zeng-Bao.. Acta Physica Sinica, 2002, 51(10): 2344-2348.doi:10.7498/aps.51.2344
      Metrics
      • Abstract views:6844
      • PDF Downloads:46
      • Cited By:0
      Publishing process
      • Received Date:16 July 2019
      • Accepted Date:19 September 2019
      • Available Online:27 November 2019
      • Published Online:05 December 2019

        返回文章
        返回
          Baidu
          map