\begin{document}$ L_{\odot} $\end{document}-106\begin{document}$L_{\odot}$\end{document}) O stars, with 25\begin{document}$ M_{\odot} $\end{document}-30\begin{document}$M_{\odot}$\end{document} solar mass for solar metallicity. The WR stars possess very strong stellar winds, which have velocities up to 3000 km/s and wind mass loss rate \begin{document}$10^{-5} M_{\odot}$\end{document} a year. These winds are observed in the broad emission line profiles (sometimes, even P-Cygni profiles) of WR spectra in the optical and UV range. Actually, these winds are so strong that they can peel the star and convert it into a nude nucleus without envelope. It has been found that three bright galactic stars located at Cygnus region have broad strong emission bands, rather than absorptions lines, superposed on the typical continuum of hot stars. In 1930 Beals correctly identified these features as emission lines produced by high ionized elements such as helium, carbon, nitrogen and oxygen. The physical factors which can affect the evolution of WR stars are explored in this paper. These physical factors include stellar mass, initial velocities, orbital periods, metallicities, etc. According to the equations for angular momentum transfer and chemical element diffusion, we can ascertainhow these physical factors influence the evolution of WR stars and the mixing of chemical elements in WR stars.The result indicates that massive stars with high initial velocities and metallicities have strong stellar winds and be prone to producing WR stars. In contrast with the counterpart with high metallicities,it is hard for the single star with low metallicity to generate WR star due to weak wind. However, the star with very high initial velocity and low metallicity can form chemical homogenious evolution. Thestar has an enlarged convective core and a very thin hydrogen envelope and it can also generate WR star. The component in the binary system with short orbital period can transfer mass to the companion star through Roche lobe overflow, and this physical process can produce WR star under the condition of low metallicity. Furthermore, mass removal due to Roche lobe overflow reduces the temperature of stellar convective core and rate of nuclear reaction. It is shown that mass metallicities of chemical elements including 4He, 12C, 19F, 22Ne, 23Na, 25Mg in the primary star are higher than those in the single stars, whereas mass metallicities of chemical elements including 1H, 14N, 16O, 20Ne, and 26Al are lower than those in the single counterparts. In a word, the conditions for massive stars with high initial velocities and metallicities in the binary system with short orbital period favor the formation of WR stars."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Peng Wei-Guo, Song Han-Feng, Zhan Qiong, Wu Xing-Hua, Jing Jiang-Hong
    PDF
    HTML
    Get Citation
    • Wolf-Rayet stars (WR stars) were discovered by French astronomers Charles Wolf and Georges Rayet in 1867. The Wolf-Rayet (WR) stars are the evolved descents of the most massive, extremely hot (temperatures up to 200000 K) and very luminous (10 5 $ L_{\odot} $ -10 6 $L_{\odot}$ ) O stars, with 25 $ M_{\odot} $ -30 $M_{\odot}$ solar mass for solar metallicity. The WR stars possess very strong stellar winds, which have velocities up to 3000 km/s and wind mass loss rate $10^{-5} M_{\odot}$ a year. These winds are observed in the broad emission line profiles (sometimes, even P-Cygni profiles) of WR spectra in the optical and UV range. Actually, these winds are so strong that they can peel the star and convert it into a nude nucleus without envelope. It has been found that three bright galactic stars located at Cygnus region have broad strong emission bands, rather than absorptions lines, superposed on the typical continuum of hot stars. In 1930 Beals correctly identified these features as emission lines produced by high ionized elements such as helium, carbon, nitrogen and oxygen. The physical factors which can affect the evolution of WR stars are explored in this paper. These physical factors include stellar mass, initial velocities, orbital periods, metallicities, etc. According to the equations for angular momentum transfer and chemical element diffusion, we can ascertainhow these physical factors influence the evolution of WR stars and the mixing of chemical elements in WR stars.The result indicates that massive stars with high initial velocities and metallicities have strong stellar winds and be prone to producing WR stars. In contrast with the counterpart with high metallicities,it is hard for the single star with low metallicity to generate WR star due to weak wind. However, the star with very high initial velocity and low metallicity can form chemical homogenious evolution. Thestar has an enlarged convective core and a very thin hydrogen envelope and it can also generate WR star. The component in the binary system with short orbital period can transfer mass to the companion star through Roche lobe overflow, and this physical process can produce WR star under the condition of low metallicity. Furthermore, mass removal due to Roche lobe overflow reduces the temperature of stellar convective core and rate of nuclear reaction. It is shown that mass metallicities of chemical elements including 4He, 12C, 19F, 22Ne, 23Na, 25Mg in the primary star are higher than those in the single stars, whereas mass metallicities of chemical elements including 1H, 14N, 16O, 20Ne, and 26Al are lower than those in the single counterparts. In a word, the conditions for massive stars with high initial velocities and metallicities in the binary system with short orbital period favor the formation of WR stars.
          Corresponding author:Song Han-Feng,hfsong@gzu.edu.cn; Zhan Qiong,zhanqiong1108@163.com;
        • Funds:Supported by the National Natural Science Foundation of China (Grant Nos. 11463002, 11863003), the Project for Science and Technology Plan in Guizhou Province, China (Grant No. [2018]5781), and the Open Foundation of the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant No. OP201405)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

      • 0.45 WR星的类型 判定依据
        O型星 $\log (T_{\rm eff})>4.5$
        WNL型星 $\log (T_{\rm eff})>4.0$ 和 $X_{\rm H} <0.3$
        WNE型星 $X_{\rm H} <10^{-5}$ 和 $X_{\rm C}
        WNC型星 $\dfrac{X_{\rm C}}{X_{\rm N}}>0.1$ 和 $\dfrac{X_{\rm C}}{X_{\rm N}}<10$
        WC型星 $X_{\rm C}>X_{\rm N}$ 和 $\rm \dfrac{C+O}{He}<1$
        WO型星 $X_{\rm C}>X_{\rm N}$ 和 $\rm \dfrac{C+O}{He}>1$
        注: $T_{\rm eff}$是恒星的有效温度; ${X_{i} }/{X_{j} }$为恒星元素的质量丰度之比; $\rm ({C+O})/{He}$为数丰度之比.
        DownLoad: CSV

        Models $M_1/M_\odot$ $M_2/M_\odot$ $Z$ $\alpha$ $P_{\rm orb, ini}$/d $V_{\rm ini, 1}$/km·s–1 $V_{\rm ini, 2}$/km·s–1
        S1 60 0.014 0.0385 0
        S2 60 0.014 0.0385 300
        S3 60 0.014 0.0385 600
        S4 40 0.014 0.0385 300
        S5 60 0.0021 0.0385 300
        S6 60 0.0021 0.0385 600
        B1 60 40 0.014 0.0385 3.0 0 0
        B2 60 40 0.014 0.0385 3.0 300 300
        B3 60 40 0.014 0.0385 3.0 600 600
        B4 60 40 0.014 0.0385 40.0 300 300
        B5 60 40 0.0021 0.0385 3.0 300 300
        注: B为双星系统, S为单星; $M_1$, $M_2$分别为主星和次星的质量(以太阳质量$M_{\odot}$为单位);Z为金属丰度; $\alpha$为对流超射系数;
        $P_{\rm orb, ini}$为双星初始轨道周期; $V_{\rm ini, 1}$, $V_{\rm ini, 2}$分别为主星和次星的初始自转赤道速度.
        DownLoad: CSV

        Sequence Age/Myr $M/M_{\odot}$ $\log T_{\rm eff}$ $\log ({L_{1}}/{L_{\odot}})$ $\rm [N/H]$ $V_{\rm eq}$/km·s–1 $\log T_{\rm c}$ $\log \rho_{\rm c}$
        ZAMS
        S1 0.0000 60.00 4.68 5.72 7.84 0.00 7.60 0.31
        S2 0.0000 60.00 4.66 5.70 7.84 300.00 7.59 0.29
        S3 0.0000 60.00 4.63 5.64 7.84 600.00 7.58 0.26
        S4 0.0000 40.00 4.62 5.34 7.84 300.00 7.57 0.40
        S5 0.0000 60.00 4.67 5.74 6.99 300.00 7.57 0.24
        S6 0.0000 60.00 4.65 5.70 6.99 600.00 7.56 0.21
        TAMS
        S1 3.9511 42.02 4.42 5.98 9.01 0.00 7.81 0.91
        S2 4.1537 44.42 4.46 6.00 8.96 18.07 7.81 0.90
        S3 4.5124 37.75 4.69 5.98 9.29 18.66 7.81 0.92
        S4 5.3408 31.87 4.22 5.70 8.63 1.42 7.79 1.00
        S5 4.3346 54.56 4.29 6.05 7.96 7.21 7.87 1.05
        S6 5.0531 34.52 4.88 5.99 8.96 25.65 7.86 1.10
        BCHEB
        S1 3.9550 42.01 4.46 6.00 9.01 0.00 7.98 1.43
        S2 4.1574 44.40 4.51 6.02 8.98 19.75 7.98 1.42
        S3 4.5162 37.62 4.77 6.01 9.30 25.72 7.98 1.45
        S4 5.3453 31.83 4.25 5.72 8.63 1.37 7.96 1.51
        S5 4.3383 54.53 4.31 6.06 7.96 7.28 8.03 1.55
        S6 5.0570 34.44 4.96 6.02 8.97 36.78 8.03 1.60
        ECHEB
        S1 4.3054 25.27 5.21 5.99 23.45 0.00 8.53 3.13
        S2 4.5120 25.94 5.21 6.00 23.02 158.64 8.53 3.13
        S3 4.8924 16.90 5.20 5.74 24.64 76.49 8.51 3.22
        S4 5.7771 15.57 5.35 5.79 25.17 327.58 8.88 4.59
        S5 4.6825 39.56 4.45 6.19 8.45 5.98 8.54 3.07
        S6 5.4231 18.20 5.21 5.79 28.82 49.92 8.52 3.21
        BCCB
        S1 4.3099 25.16 5.33 6.06 16.72 0.00 8.83 4.14
        S2 4.5167 25.81 5.34 6.07 19.18 286.44 8.85 4.24
        S3 4.8980 16.80 5.34 5.83 20.60 149.13 8.86 4.45
        S4 5.7772 15.57 5.36 5.79 25.28 334.92 8.92 4.78
        S5 4.6870 39.45 4.46 6.25 8.57 37.32 8.84 4.12
        S6 5.4284 18.10 5.34 5.87 20.66 94.78 8.85 4.35
        ECCB
        S1 4.3100 25.15 5.42 6.09 18.59 0.00 9.07 5.25
        S2 4.5167 25.81 5.42 6.10 18.47 313.57 9.06 5.19
        S3 4.8981 16.80 5.41 5.86 20.55 157.94 9.06 5.40
        S4 5.7772 15.57 5.40 5.81 25.43 367.73 9.03 5.33
        S5
        S6 5.4285 18.10 5.41 5.90 20.90 97.57 9.05 5.34
        注: ZAMS为零龄主序; TAMS表示主序结束; BCHEB为中心氦核开始燃烧; ECHEB为中心氦核结束燃烧; BCCB 为中心碳核开始燃烧; CCB为中心碳核结束燃烧.
        DownLoad: CSV

        Sequence Age
        /Myr
        $P_{\rm orb}$
        /d
        $M_{1}/M_{\odot}$ $M_{2}/M_{\odot}$ $\log(T_{\rm eff, 1})$
        /K
        $\log \Big(\dfrac{L_{1}}{L_{\odot} }\Big)$ $\log(T_{\rm eff, 2})$
        /K
        $\log \Big(\dfrac{L_{2}}{L_{\odot} }\Big)$ $\Big[\rm \dfrac{N_{1}}{H}\Big]$ $\Big[\rm \dfrac{N_{2}}{H}\Big]$ $V_{\rm eq1}$/
        km·s–1
        $V_{\rm eq2}$/
        km·s–1
        $\log T_{\rm c}$/
        K
        $\log \rho_{\rm c}$/
        g·cm–3
        ZAMS
        B1 0.0000 3.00 60.00 40.00 4.68 5.71 4.64 5.36 7.84 7.84 0.00 0.00 7.62 0.37
        B2 0.0000 3.00 60.00 40.00 4.67 5.70 4.63 5.34 7.84 7.84 288.35 294.86 7.61 0.35
        B3 0.0000 3.00 60.00 40.00 4.64 5.65 4.59 5.27 7.84 7.84 566.93 581.75 7.60 0.32
        B4 0.0000 40.00 60.00 40.00 4.67 5.70 4.63 5.34 7.84 7.84 288.35 294.86 7.61 0.35
        B5 0.0000 3.00 60.00 40.00 4.69 5.66 4.65 5.29 6.99 6.99 306.83 301.14 7.66 0.50
        BTM1
        B1 2.6862 3.60 53.01 38.15 4.59 5.84 4.59 5.48 7.84 7.84 0.00 0.00 7.64 0.39
        B2 2.6314 3.63 51.90 38.00 4.59 5.82 4.59 5.47 8.25 7.94 250.24 162.73 7.63 0.39
        B3 2.7810 4.12 51.34 37.86 4.57 5.83 4.59 5.48 8.22 7.96 238.80 146.79 7.64 0.40
        B4 4.1328 63.17 43.82 35.94 4.23 6.02 4.49 5.56 9.05 8.69 35.18 120.39 8.24 2.26
        B5 2.9131 3.25 57.69 39.46 4.60 5.86 4.61 5.47 7.34 7.07 270.95 164.95 7.68 0.52
        ETM1
        B1 3.8956 4.25 36.84 43.77 4.62 5.90 4.57 5.67 9.20 8.18 0.00 0.00 7.70 0.61
        B2 2.7305 3.41 45.44 43.82 4.60 5.78 4.61 5.57 8.66 8.26 239.26 177.55 7.63 0.42
        B3 2.9777 3.92 44.57 43.27 4.59 5.81 4.60 5.58 8.83 8.25 226.58 161.96 7.64 0.44
        B4 4.1426 65.47 36.94 36.00 4.27 6.10 4.49 5.56 9.26 8.67 73.07 330.19 8.31 2.47
        B5 3.9817 3.61 38.02 51.22 4.63 5.87 4.65 5.73 8.27 7.82 217.02 168.84 7.72 0.69
        TAMS
        B1 4.0397 4.65 33.60 43.48 4.68 5.91 4.56 5.68 9.30 8.18 0.00 0.00 7.81 0.95
        B2 4.1254 5.13 25.57 43.47 4.83 5.79 4.53 5.69 9.86 8.41 20.52 193.13 7.80 0.99
        B3 4.0832 5.43 27.93 43.40 4.81 5.84 4.54 5.68 9.66 8.44 19.99 174.17 7.80 0.97
        B4 4.0693 62.61 44.06 36.03 4.41 5.97 4.54 5.56 8.82 8.63 6.63 68.60 7.72 0.65
        B5 4.3382 3.81 34.79 50.91 4.68 5.92 4.63 5.75 8.44 7.81 169.76 181.54 7.86 1.10
        BCHEB
        B1 4.0409 4.65 33.57 43.48 4.69 5.91 4.56 5.68 9.30 8.18 0.00 0.00 7.82 0.99
        B2 4.1297 5.15 25.44 43.46 4.92 5.82 4.53 5.69 9.87 8.41 30.07 192.49 7.97 1.52
        B3 4.0874 5.45 27.80 43.39 4.90 5.87 4.54 5.68 9.68 8.44 29.48 173.40 7.98 1.50
        B4 4.1281 63.03 43.88 35.95 4.48 5.99 4.53 5.56 9.04 8.63 4.75 60.68 7.91 1.21
        B5 4.3422 3.82 34.74 50.91 4.75 5.94 4.63 5.76 8.44 7.81 149.04 181.17 8.02 1.60
        BMT2
        B1 4.0474 4.67 33.39 43.47 4.63 6.00 4.58 5.69 9.30 9.30 0.00 0.00 8.24 2.29
        B2 3.1581 3.55 43.04 43.10 4.61 5.81 4.59 5.59 8.99 8.19 231.13 191.20 7.64 0.45
        B3 3.1290 3.97 43.65 43.04 4.59 5.82 4.59 5.58 8.93 8.23 223.55 166.73 7.64 0.45
        B4
        B5 4.3460 3.84 34.70 50.90 4.66 5.99 4.63 5.76 8.44 7.81 187.54 180.93 8.26 2.34
        EMT2
        B1 4.0562 5.13 30.44 45.39 4.65 6.06 4.62 5.72 9.48 8.74 0.00 0.00 8.31 2.49
        B2 3.5409 3.78 37.67 44.95 4.61 5.82 4.59 5.65 9.06 8.42 212.81 195.54 7.66 0.51
        B3 3.6151 4.27 37.66 44.50 4.60 5.84 4.58 5.65 9.07 8.44 203.84 175.46 7.66 0.52
        B4
        B5 4.3517 4.25 31.33 51.54 4.67 6.05 4.64 5.77 8.60 7.91 174.27 292.23 8.31 2.49
        ECHEB
        B1 4.4454 8.50 14.60 44.32 5.30 5.71 4.57 5.75 25.43 8.65 0.00 0.00 8.74 3.96
        B2 4.5716 8.31 11.27 42.40 5.27 5.52 4.45 5.73 24.26 8.41 58.94 181.80 8.70 3.93
        B3 4.5155 9.20 12.05 42.46 5.27 5.56 4.47 5.71 24.15 8.44 52.74 142.55 8.68 3.83
        B4 4.3645 94.44 25.01 35.66 5.14 5.92 4.50 5.58 24.02 8.65 0.32 127.17 8.37 2.68
        B5 4.6953 5.16 24.36 51.19 5.18 5.95 4.61 5.80 27.78 7.85 6.01 149.71 8.48 2.99
        BCCB
        B1 4.4468 8.51 14.58 44.31 5.35 5.75 4.57 5.75 24.91 8.65 0.00 0.00 8.89 4.66
        B2 4.5741 8.32 11.24 42.40 5.33 5.58 4.45 5.73 23.39 8.41 67.64 179.57 8.85 4.60
        B3 4.5184 9.22 12.02 42.45 5.34 5.62 4.47 5.71 24.42 8.44 62.74 140.22 8.88 4.71
        B4 4.4963 110.76 20.53 35.48 5.36 5.95 4.48 5.59 24.89 8.65 0.56 99.94 8.90 4.56
        B5 4.7078 5.25 23.75 51.18 5.37 6.03 4.61 5.80 23.51 7.85 10.68 146.97 8.92 4.63
        ECCB
        B1 4.4469 8.51 14.58 44.31 5.41 5.77 4.57 5.75 24.88 8.65 0.00 0.00 9.04 5.38
        B2 4.5743 8.32 11.24 42.40 5.37 5.60 4.45 5.73 22.95 8.41 66.77 173.97 9.01 5.44
        B3 4.5185 9.22 12.01 42.45 5.38 5.64 4.47 5.71 24.41 8.44 63.39 136.75 9.01 5.41
        B4 4.4963 110.77 20.53 35.48 5.42 5.97 4.48 5.59 24.88 8.65 0.67 98.21 9.05 5.22
        B5 4.7078 5.25 23.75 51.18 5.42 6.04 4.61 5.80 23.50 7.85 12.57 144.92 9.05 5.18
        DownLoad: CSV

        Sequence Age/Myr $M_1/M_{\odot}$ log($X_{\rm ^{1}H}$) log($X_{\rm ^{4}He}$) log($X_{\rm ^{12}C}$) log($X_{\rm ^{14}N}$) log($X_{\rm ^{16}O}$) log($X_{\rm ^{19}F}$) log($X_{\rm ^{20}Ne}$) log($X_{\rm ^{22}Ne}$) $X_{\rm ^{26}Al}$
        ZAMS
        S1 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
        S2 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
        S6 0.0000 60.00 –0.12 –0.63 –3.45 –3.98 –3.01 –7.28 –3.69 –4.78 0
        TAMS
        S1 3.9511 42.02 –0.23 –0.40 –3.91 –2.08 –3.07 –9.23 –2.87 –6.77 9.77 × 10–6
        S2 4.1537 44.42 –0.22 –0.42 –3.70 –2.11 –2.86 –7.86 –2.87 –5.37 4.57 × 10–6
        S6 5.0531 34.52 –0.99 –0.05 –4.56 –2.88 –4.60 –10.46 –3.83 –7.51 4.36 × 10–6
        BCHEB
        S1 3.9550 42.01 –0.23 –0.40 –3.91 –2.08 –3.07 –9.23 –2.87 –6.77 9.77 × 10–6
        S2 4.1574 44.40 –0.22 –0.41 –3.77 –2.10 –2.91 –8.07 –2.87 –5.58 4.89 × 10–6
        S6 5.0570 34.44 –0.99 –0.05 –4.56 –2.88 –4.60 –10.46 –3.83 –7.51 4.36 × 10–6
        WNL
        S1 4.1147 34.94 –0.58 –0.14 –3.87 –2.06 –3.63 –9.72 –2.88 –6.53 4.16 × 10–5
        S2 4.3343 36.29 –0.57 –0.14 –3.82 –2.06 –3.59 –9.67 –2.88 –6.45 3.54 × 10–5
        S6 4.1796 48.34 –0.52 –0.16 –4.60 –2.88 –4.55 –10.50 –3.79 –7.50 4.46 × 10–6
        WNE
        S1 4.1801 31.26 –5.02 –0.01 –3.73 –2.05 –3.77 –9.61 –2.89 –6.56 5.62 × 10–5
        S2
        S6
        WC
        S1 4.2217 28.36 –21.87 –0.51 –0.34 –17.12 –0.68 –4.71 –2.80 –1.88 1.12 × 10–15
        S2 4.4173 30.79 –5.22 –0.02 –1.50 –2.06 –2.05 –5.72 –2.89 –2.91 4.67 × 10–5
        S6 5.2107 29.81 –5.80 –0.02 –1.37 –2.89 –2.52 –6.15 –3.84 –3.38 3.80 × 10–6
        WO
        S1 4.2569 26.70 –21.35 –0.65 –0.34 –16.95 –0.52 –4.72 –2.70 –1.89 2.57 × 10–15
        S2 4.4302 28.58 –17.68 –0.71 –0.36 –5.17 –0.45 –4.72 –2.63 –1.91 4.16 × 10–8
        S6 5.3898 18.84 –29.68 –0.64 –0.32 –17.99 –0.55 –5.48 –3.51 –2.71 8.51 × 10–17
        ECHEB
        S1 4.3054 25.27 –29.41 –0.77 –0.37 –16.81 –0.41 –4.72 –2.59 –1.91 5.01 × 10–15
        S2 4.5120 25.94 –28.78 –0.82 –0.39 –16.61 –0.38 –4.72 –2.54 –1.93 7.07 × 10–15
        S6 5.4231 18.20 –35.90 –0.71 –0.33 –17.93 –0.48 –5.48 –3.43 –2.72 1.14 × 10–16
        BCCB
        S1 4.3099 25.16 –22.67 –0.79 –0.37 –16.80 –0.40 –4.73 –2.58 –1.92 5.37 × 10–15
        S2 4.5167 25.81 –24.97 –0.83 –0.40 –16.64 –0.37 –4.72 –2.52 –1.93 7.58 × 10–15
        S6 5.4284 18.10 –27.74 –0.72 –0.33 –17.93 –0.47 –5.48 –3.41 –2.72 1.54 × 10–16
        ECCB
        S1 4.3100 25.15 –24.54 –0.79 –0.37 –16.80 –0.40 –4.73 –2.58 –1.92 5.37 × 10–15
        S2 4.5167 25.81 –24.26 –0.83 –0.40 –16.64 –0.37 –4.72 –2.52 –1.93 7.76 × 10–15
        S6 5.4285 18.10 –27.99 –0.72 –0.33 –17.93 –0.47 –5.48 –3.41 –2.72 1.54 × 10–16
        DownLoad: CSV

        Sequence Age/Myr $M_1/M_{\odot}$ log($X_{\rm ^{1}H}$) log($X_{\rm ^{4}He}$) log($X_{\rm ^{12}C}$) log($X_{\rm ^{14}N}$) log($X_{\rm ^{16}O}$) log($X_{\rm ^{19}F}$) log($X_{\rm ^{20}Ne}$) log($X_{\rm ^{22}Ne}$) $X_{\rm ^{26}Al}$
        ZAMS
        B1 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
        B2 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
        BTM1
        B1 2.6862 53.01 –0.14 –0.58 –2.62 –3.15 –2.18 –6.54 –2.95 –4.04 3.31 × 1021
        B2 2.6314 51.90 –0.14 –0.58 –2.76 –2.74 –2.21 –6.66 –2.95 –4.16 3.38 × 10–7
        ETM1
        B1 3.8956 36.84 –0.40 –0.23 –3.87 –2.06 –3.56 –9.69 –2.96 –6.62 1.81 × 10–5
        B2 2.7305 45.44 –0.16 –0.53 –3.02 –2.36 –2.38 –6.94 –2.95 –4.45 3.89 × 10–6
        ECHB
        B1 4.0397 33.60 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.45 × 10–5
        B2 4.1254 25.57 –1.06 –0.05 –3.80 –2.05 –3.67 –9.68 –2.96 –6.63 4.16 × 10–5
        BCHEB
        B1 4.0409 33.57 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.45 × 10–5
        B2 4.1297 25.44 –1.07 –0.05 –3.80 –2.05 –3.67 –9.68 –2.96 –6.63 4.16 × 10–5
        BMT2
        B1 4.0474 33.39 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.51 × 10–5
        B2 3.1581 43.04 –0.24 –0.39 –3.80 –2.09 –2.95 –8.24 –2.95 –5.76 1.31 × 10–5
        WNL
        B1 4.0480 32.78 –0.52 –0.16 –3.85 –2.05 –3.61 –9.73 –2.96 –6.62 2.81 × 10–5
        B2 3.8633 32.25 –0.52 –0.16 –3.85 –2.05 –3.61 –9.72 –2.96 –6.60 2.95 × 10–5
        EMT2
        B1 4.0562 30.44 –0.68 –0.11 –3.84 –2.05 –3.64 –9.72 –2.96 –6.60 3.89 × 10–5
        B2 3.5409 37.67 –0.28 –0.34 –3.86 –2.07 –3.16 –8.72 –2.95 –6.19 1.41 × 10–5
        WNE
        B1 4.1344 26.76 –5.00 –0.01 –3.73 –2.05 –3.76 –9.59 –2.97 –6.65 4.78 × 10–5
        B2 4.2129 22.30 –5.18 –0.01 –3.68 –2.06 –3.74 –9.45 –2.97 –6.52 4.78 × 10–5
        WC
        B1 4.1976 23.92 –28.45 –0.09 –0.80 –14.82 –2.17 –4.58 –2.97 –1.87 6.45 × 10–17
        B2 4.2498 21.01 –10.94 –0.01 –2.05 –2.10 –3.40 –5.62 –2.97 –2.91 4.36 × 10–5
        WO
        B1 4.4339 14.75 –31.67 –0.64 –0.31 –17.28 –0.58 –4.59 –2.85 –1.88 5.62 × 10–5
        B2
        ECHEB
        B1 4.4454 14.60 –31.77 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
        B2 4.5716 11.27 –30.86 –0.60 –0.30 –17.45 –0.65 –4.58 –2.90 –1.88 2.45 × 10–16
        BCCB
        B1 4.4468 14.58 –31.25 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
        B2 4.5741 11.24 –29.98 –0.61 –0.30 –17.44 –0.64 –4.58 –2.90 –1.88 2.51 × 10–16
        ECCB
        B1 4.4469 14.58 –31.22 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
        B2 4.5743 11.24 –29.54 –0.61 –0.30 –17.44 –0.64 –4.58 –2.90 –1.88 2.51 × 10–16
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

      • [1] Diao Bin, Xu Yan, Huang Xiu-Lin, Wang Yi-Bo.Study of tidal deformabilities of neutron stars using relativistic mean field theory containingδmesons. Acta Physica Sinica, 2023, 72(2): 022601.doi:10.7498/aps.72.20221599
        [2] Liang Hua-Zhi, Zhang Jing-Yi.Evolution of complexity for critical neutral Gauss-Bonnet-anti-de Sitter black holes. Acta Physica Sinica, 2021, 70(3): 030401.doi:10.7498/aps.70.20201286
        [3] Li Zhi, Song Han-Feng, Peng Wei-Guo, Wang Jing-Zhou, Zhan Qiong.Physical process of tidal synchronization and orbital circularization in rotating binaries. Acta Physica Sinica, 2018, 67(19): 199701.doi:10.7498/aps.67.20181056
        [4] Tai Li-Ting, Song Han-Feng, Wang Jiang-Tao.Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar. Acta Physica Sinica, 2016, 65(4): 049701.doi:10.7498/aps.65.049701
        [5] Zhan Qiong, Song Han-Feng, Tai Li-Ting, Wang Jiang-Tao.Theoretical model of the rotationally and tidally distorted binaries. Acta Physica Sinica, 2015, 64(8): 089701.doi:10.7498/aps.64.089701
        [6] Liang Lin-Yun, Lü Guang-Hong.Phase-field modeling of vacancy cluster evolution in Fe. Acta Physica Sinica, 2013, 62(18): 182801.doi:10.7498/aps.62.182801
        [7] Cheng Yu-Feng, Nie Wan-Sheng, Che Xue-Ke, Tian Xi-Hui, Hou Zhi-Yong, Zhou Peng-Hui.Experimental investigation on the evolution of dielectric barrier discharge plasma induced flow at different operating pressures. Acta Physica Sinica, 2013, 62(10): 104702.doi:10.7498/aps.62.104702
        [8] Song Han-Feng, Wang Jing-Zhou, Li Yun.The effect of the radiative pressure on the potential function in asynchronous rotational binary. Acta Physica Sinica, 2013, 62(5): 059701.doi:10.7498/aps.62.059701
        [9] Cao Xiao-Xia, Ma Song-Hua, Ren Qing-Bao, Yang Zheng.Multiple solitoff solutions and the evolution of (2+1)-dimensional breaking soliton equation. Acta Physica Sinica, 2012, 61(14): 140505.doi:10.7498/aps.61.140505
        [10] Jiang Li-Hong, Ma Song-Hua, Fang Jian-Ping, Wu Hong-Yu.New soliton solutions and soliton evolvements for the (3+1)-dimensional Burgers system. Acta Physica Sinica, 2012, 61(2): 020510.doi:10.7498/aps.61.020510
        [11] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng.Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621.doi:10.7498/aps.59.2617
        [12] Yuan Chun-Hua, Li Xiao-Hong, Tang Duo-Chang, Yang Hong-Dao, Li Guo-Qiang.Evolution of silicon surface microstructure induced by Nd:YAG nanosecond laser. Acta Physica Sinica, 2010, 59(10): 7015-7019.doi:10.7498/aps.59.7015
        [13] Shi Zhu-Yi, Zhang Chun-Mei, Tong Hong, Zhao Xing-Zhi, Ni Shao-Yong.Evolution from vibration to rotation of 102Ru nucleus discussed within microscopic theory. Acta Physica Sinica, 2008, 57(3): 1564-1568.doi:10.7498/aps.57.1564
        [14] Yan Sen-Lin.Nonlinear evolution of chaotic signal transmission in optical fiber. Acta Physica Sinica, 2007, 56(4): 1994-2004.doi:10.7498/aps.56.1994
        [15] FANG JIAN-HUI, ZHAO SONG-QING.LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393.doi:10.7498/aps.50.390
        [16] LI LIN-SEN.EFFECT OF GRAVITATIONAL RADIATION DAMPING ON THE VARIATION OF THE ORBITAL ELEMENTS OF BINARY SYSTEMS——THE EFFECT ON THE TIME OF PASSING PERIGEE OF BINARY STAR. Acta Physica Sinica, 1994, 43(5): 694-698.doi:10.7498/aps.43.694
        [17] MENG JIE.VARIATION OF PAIR CORRELATION IN FAST ROTATING NUCLEI. Acta Physica Sinica, 1993, 42(3): 368-372.doi:10.7498/aps.42.368
        [18] ZHANG ZHI-XIANG.THE TRAJECTORY OF THE EXTRAORDINARY RAY AS THE CRYSTAL ROTATES. Acta Physica Sinica, 1980, 29(11): 1483-1489.doi:10.7498/aps.29.1483
        [19] REN GENG-WEI.CLASSIFICATION OF WAVE FUNCTIONS IN A MANY NUCLEON SYSTEM BY A ROTATION GROUP METHOD. Acta Physica Sinica, 1974, 23(3): 13-25.doi:10.7498/aps.23.13
        [20] SHEN HUNG-TAO, YEUAN TU-NAN, LEE YANG-KOU.ROTATIONAL SPECTRUM OF F19. Acta Physica Sinica, 1959, 15(8): 440-446.doi:10.7498/aps.15.440
      Metrics
      • Abstract views:9449
      • PDF Downloads:65
      • Cited By:0
      Publishing process
      • Received Date:08 July 2019
      • Accepted Date:12 August 2019
      • Available Online:01 November 2019
      • Published Online:05 November 2019

        返回文章
        返回
          Baidu
          map