\begin{document}$1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $\end{document} in a frequency range of 2100 Hz, and the bandwidth is about 2.8 kHz. The second method is to measure the static magnetic fields by measuring the Larmor frequency of the hyperpolarized 129Xe in the cell. Considering that its measurement accuracy is limited by the relaxation of the hyperpolarized 129Xe, the transverse and longitudinal relaxation time are measured to be about 20.6 s and 21.5 s, respectively. Then, the experimental calibration results indicate that the static magnetic field measurement precision is about 9.4 pT and the measurement range exceeds 50 μT, which prove that the static magnetic field measurement can still be performed under geomagnetic field (50 μT). The rubidium-xenon vapor cell atomic magnetometer enables the measurement of AC magnetic fields and static magnetic fields in the same system. Compared with the spin exchange relaxation free (SERF) atomic magnetometer, the rubidium-xenon vapor cell atomic magnetometer has some unique advantages. For AC magnetic field measurement, it has a wider frequency range. For static magnetic field measurement, it can be performed under geomagnetic field and can give the magnetic field measurement value without using the calibration parameters of the system. These characteristics make the rubidium-xenon vapor cell atomic magnetometer have broad application prospects. It is expected to be applied to geomagnetic surveys, basic physics and other aspects of research."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua
PDF
HTML
Get Citation
Metrics
  • Abstract views:9279
  • PDF Downloads:171
  • Cited By:0
Publishing process
  • Received Date:04 June 2019
  • Accepted Date:13 June 2019
  • Available Online:01 August 2019
  • Published Online:20 August 2019

    返回文章
    返回
      Baidu
      map