wmax, the upper bound of the memory level, is a constant with a value of 1, the STM→LTM memristor model exhibits no learning-experience behavior, and this model shows a faster relearning behavior in the " learning-forgetting-relearning” experiment. The relearning process is faster because the memory forgetting during pulse-to-pulse interval in the relearning process is slower than that in the first learning process. In the STM→LTM memristor model with learning-experience behavior, wmax is redesigned as a state variable in [0,1], and its value will be influenced by the applied voltage. The memory formation in the first learning process is relatively slow because wmax limits the memory formation speed when the pulse is applied. After the forgetting process, the limitation of wmax on the pulse-induced memory formation is less obvious, so the memory of the device increases at a faster speed during the memory recovery of the relearning process. In this case, the forgetting speed still becomes slower after each pulse has been applied. If the pulse-induced wmax increase is so fast that wmax will quickly increase to its upper bound after a few pulses have been applied in the first learning process, and the learning-experience behavior is similar to the faster relearning behavior when wmax = 1. In most of experimental research papers about the STM→LTM memristor, the change of the memristance can be explained by the formation and annihilation of the conductive channel between two electrodes of a memristor. During a certain period of time, the ions (or vacancies), which can be used to form the conductive channel, are only those that are around the conductive channel, which indicates that there should be an upper bound for the size of the conductive channel within this time period. The area in which ions (or vacancies) can be used to form the conductive channel is called the surrounding area of the conductive channel. In the model, wmax can be understood as the size of the conductive channel’s surrounding area, and it describes the upper bound of the width of the conductive channel."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:8505
    • PDF Downloads:127
    • Cited By:0
    Publishing process
    • Received Date:26 May 2019
    • Accepted Date:02 July 2019
    • Available Online:01 October 2019
    • Published Online:05 October 2019

      返回文章
      返回
        Baidu
        map