Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun
    PDF
    HTML
    Get Citation
    • Magnetar is a kind of pulsar powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with temperature kT~ 0.2-0.6 keV, much higher than the typical values for rotation-powered pulsars. The observation and theoretical study of magnetar are one of hot topics in the field of pulsar research. The activity and emission characteristics of magnetar can be attributed to internal superhigh magnetic field. According to the work of WGW19 and combining with the equation of state, we first calculate the electric conductivity of the crust under a strong magnetic field, and then calculate the toroidal magnetic field decay rate and magnetic energy decay rate by using an eigenvalue equation of toroidal magnetic field decay and considering the effect of general relativity. We reinvestigate the L X- L rotrelationship of 22 magnetars with persistent soft X-ray luminosities and obtain two new fitting formulas on L X- L rot. We find that for the magnetars with L X< L rot, the soft X-ray radiations may originate from their rotational energy loss rate, or from magneto-sphere flow and particle wind heating. For the magnetars with L X> L rot, the Ohmic decay of crustal toroidal magnetic fields can provide their observed isotropic soft X-ray radiation and maintain higher thermal temperature. As for the initial dipole magnetic fields of magnetars, we mainly refer to the rersearch by Viganò et al. (Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434123), because they first proposed the up-dated neutron star magneto-thermal evolution model, which can successfully explain the X-ray radiation and cooling mechanism of young pulsars including magnetars and high-magnetic field pulsars. Objectively speaking, as to the decay of toroidal magnetic fields, there are some differences between our theoretical calculations of magnetic energy release rates and the actual situation of magnetic field decay in magnetars, this is because the estimate of initial dipolar magnetic field, true age and the thickness of inner crust of a magnetar are somewhat uncertain. In addition, due to the interstellar-medium’s absorptions to soft X-ray and the uncertainties of distance estimations, the observed soft X-ray luminosities of magnetars have certain deviations. With the continuous improvement of observation, equipment and methods, as well as the in-depth development of theoretical research, our model will be further improved, and the theoretical results are better accordant with the high-energy observation of magnetars. We also discuss other possible anisotropy origins of soft X-ray fluxes of magnetars, such as the formation of magnetic spots and thermoplastic flow wave heating in the polar cap. Although anisotropic heating mechanisms are different from Ohmic decay, all of them require that there exist strong toroidal magnetic fields inside a magnetar. However, the anisotropic heating mechanisms require higher toroidal multipole fields inside a magnetar (such as magnetic octupole field) and are related to complex Hall drift: these may be our research subjects in the future.
          Corresponding author:Chen Jian-Ling,chenjianling62@163.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. U1631106, U1431125, 11573059, 11847307, U1831102), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0863), and the Scientific Research Project of Yuncheng University, China (Grant No. YQ-2014013).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

        [65]

        [66]

        [67]

        [68]

        [69]

        [70]

        [71]

        [72]

        [73]

        [74]

        [75]

        [76]

        [77]

        [78]

        [79]

        [80]

        [81]

        [82]

        [83]

        [84]

        [85]

        [86]

        [87]

        [88]

        [89]

        [90]

        [91]

        [92]

        [93]

        [94]

        [95]

        [96]

        [97]

        [98]

        [99]

        [100]

        [101]

        [102]

      • RMF模型 ${\rho _0}$/fm–3 ${E_0}$/MeV ${K_0}$/MeV m* K′/MeV J/MeV ${L_0}$/MeV $K_{{\rm{sym}}}^0$/MeV $Q_{{\rm{sym}}}^0$/MeV $K_{\tau ,V}^0$/MeV
        NL3 0.148 –16.24 271.53 0.60 –202.91 37.40 118.53 100.88 181.31 –698.85
        TMA 0.147 –16.33 318.15 0.635 572.12 30.66 90.14 10.75 –108.74 –367.99
        GM1 0.153 –16.02 300.50 0.70 215.66 32.52 94.02 17.98 25.01 –478.64
        DownLoad: CSV

        m/M R/km Rcore/R $\mu $ I/g·cm2
        1.20 11.42 0.915 1.678 1.03(1) × 1045
        1.45 11.77 0.917 1.676 1.47(2) × 1045
        1.72 12.05 0.919 1.675 1.87(2) × 1045
        2.03* 11.25 0.914 1.679 2.09(2) × 1045
        注: *在TMA模型下由物态方程给出的最大中子星质量.
        DownLoad: CSV

        T= 1 × 108K T= 2 × 108K T= 3 × 108K
        $Q = 1$ $Q = 5$ $Q = 10$ $Q = 1$ $Q = 5$ $Q = 10$ $Q = 1$ $Q = 5$ $Q = 10$
        $\rho $/g·cm–3 Z A $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1 $\sigma $/1023s–1
        Bp= 5 × 1014G 4.66 × 1011 40 127 0.455 2.15 0.752 1.69 1.15 0.591 0.998 0.821 0.490
        6.61 × 1011 40 130 0.641 2.58 0.865 2.24 1.45 0.703 1.18 0.982 0.592
        8.79 × 1011 41 134 0.928 3.22 0.991 2.97 1.54 0.822 1.31 1.20 0.702
        1.20 × 1012 42 137 1.26 3.72 1.15 3.88 2.21 0.953 2.08 1.49 0.787
        1.47 × 1012 42 140 1.97 4.63 1.23 4.89 2.50 1.04 2.43 1.69 0.867
        2.00 × 1012 43 144 2.62 4.78 1.42 6.31 3.10 1.22 3.18 2.11 1.03
        2.67 × 1012 44 149 2.67 5.59 1.68 7.82 3.75 1.41 4.08 2.59 1.29
        3.51 × 1012 45 154 3.42 6.41 1.85 10.30 4.52 1.62 5.20 3.14 1.40
        4.54 × 1012 46 161 4.20 7.26 2.08 15.60 5.24 1.89 6.53 3.78 1.65
        6.25 × 1012 48 170 5.58 8.56 2.37 17.50 6.42 2.18 8.60 4.68 1.96
        8.38 × 1012 49 181 6.95 9.67 2.66 22.20 7.46 2.49 10.90 5.55 2.23
        1.10 × 1013 51 193 8.58 11.40 2.99 27.90 8.75 2.81 13.70 6.60 2.55
        1.50 × 1013 54 211 10.80 12.90 3.45 35.60 10.40 3.24 17.30 7.95 2.95
        1.99 × 1013 57 232 13.00 14.90 3.95 43.60 12.10 3.73 21.20 9.37 3.12
        2.58 × 1013 60 257 15.20 16.90 4.46 51.20 13.80 4.22 24.90 10.80 3.88
        3.44 × 1013 65 296 17.70 19.70 5.22 59.60 16.20 4.93 28.90 12.50 4.53
        4.68 × 1013 72 354 20.40 23.50 6.23 67.70 19.10 5.87 32.60 14.60 5.37
        5.96 × 1013 78 421 21.70 26.50 7.08 69.00 21.10 6.63 33.80 15.90 6.02
        8.01 × 1013 89 548 22.10 31.20 8.48 69.80 23.80 7.82 34.70 17.20 6.95
        9.83 × 1013 100 683 23.20 35.30 9.78 69.80 25.40 8.83 36.00 17.50 7.64
        1.30 × 1014 120 990 25.50 40.30 11.80 70.80 26.50 10.10 38.20 18.10 8.20
        Bp= 3 × 1015G 4.66 × 1011 40 127 0.463 2.21 0.764 1.70 1.18 0.603 1.04 0.830 0.505
        6.61 × 1011 40 130 0.649 2.67 0.873 2.29 1.50 0.721 1.36 1.04 0.605
        8.79 × 1011 41 134 0.943 3.30 1.09 3.05 1.71 0.842 1.42 1.29 0.723
        1.20 × 1012 42 137 1.32 3.77 1.19 3.98 2.32 1.01 2.21 1.59 0.854
        1.47 × 1012 42 140 1.70 4.76 1.36 5.09 2.84 1.19 2.66 1.87 0.937
        2.00 × 1012 43 144 2.00 4.85 1.65 6.41 3.29 1.30 3.40 2.28 1.12
        2.67 × 1012 44 149 2.66 5.66 1.81 7.99 3.79 1.43 4.18 2.65 1.31
        3.51 × 1012 45 154 3.48 6.49 1.91 11.30 4.58 1.64 5.20 3.17 1.45
        4.54 × 1012 46 161 4.20 7.32 2.11 15.80 5.31 1.92 6.56 3.81 1.69
        6.25 × 1012 48 170 5.58 8.64 2.44 17.90 6.49 2.24 8.65 4.74 1.99
        8.38 × 1012 49 181 6.94 9.74 2.69 23.10 7.53 2.52 11.20 5.61 2.27
        1.10 × 1013 51 193 8.58 12.00 3.06 28.80 8.80 2.86 13.80 6.65 2.68
        1.50 × 1013 54 211 10.90 13.20 3.50 35.70 10.80 3.29 17.40 7.98 2.97
        1.99 × 1013 57 232 13.10 15.10 3.98 43.70 12.60 3.77 21.30 9.40 3.45
        2.58 × 1013 60 257 15.30 17.00 4.48 51.30 14.00 4.24 25.00 11.10 3.90
        3.44 × 1013 65 296 17.70 19.90 5.25 59.70 16.40 4.95 28.90 12.70 4.55
        4.68 × 1013 72 354 20.50 23.70 6.25 67.70 19.30 5.89 32.70 14.70 5.38
        5.96 × 1013 78 421 21.80 26.70 7.10 69.00 21.30 6.65 33.80 16.00 6.03
        8.01 × 1013 89 548 22.10 31.30 8.49 69.80 23.90 7.83 34.70 17.30 6.96
        9.83 × 1013 100 683 23.20 35.40 9.79 70.30 25.50 8.85 36.10 17.70 7.65
        1.30 × 1014 120 990 25.50 40.30 11.80 70.80 25.50 10.10 28.20 18.10 8.20
        DownLoad: CSV

        $\sigma $/s–1 t/a ${B_{\rm{p}}}$/G ${{{\rm{d}}B_{\rm{p}}^{}}/{{\rm{d}}t}}$/G·a–1 ${L_{\rm{p}}}$/erg·s–1 ${B_{\rm{t}}}$/G ${{{\rm{d}}B_{\rm{t}}^{}}/{{\rm{d}}t}}$/G·a–1 ${L_{\rm{t}}}$/erg·s–1 ${L_B}$/erg·s–1
        8.75 × 1024 5.0 × 102 1.995 × 1015 –5.92 × 109 1.57 × 1034 1.965 × 1016 –5.84 × 1010 6.28 × 1035 6.44 × 1035
        2.0 × 103 1.981 × 1015 –4.65 × 109 1.15 × 1034 1.953 × 1016 –4.58 × 1010 4.59 × 1035 4.70 × 1035
        2.0 × 104 1.954 × 1015 –1.37 × 108 3.61 × 1033 1.927 × 1016 –1.35 × 1010 1.44 × 1035 1.48 × 1035
        2.0 × 105 1.844 × 1015 –5.91 × 108 1.63 × 1033 1.818 × 1016 –5.84 × 1010 6.52 × 1034 6.68 × 1034
        2.0 × 106 1.373 × 1015 –8.61 × 107 1.56 × 1032 1.354 × 1016 –8.48 × 108 6.24 × 1033 6.40 × 1033
        2.0 × 107 6.865 × 1014 –4.36 × 107 7.85 × 1031 6.772 × 1015 –4.29 × 108 3.14 × 1033 3.22 × 1033
        2.52 × 1024 5.0 × 102 1.990 × 1015 –1.51 × 1010 3.98 × 1034 1.96 × 1016 –1.49 × 1011 1.59 × 1036 1.63 × 1036
        2.0 × 103 1.977 × 1015 –5.43 × 1010 1.65 × 1034 1.95 × 1016 –5.36 × 1010 6.61 × 1035 6.77 × 1035
        2.0 × 104 1.931 × 1015- –1.86 × 109 4.74 × 1033 1.905 × 1016 –1.83 × 1010 1.90 × 1035 1.94 × 1035
        2.0 × 105 1.745 × 1015 –7.21 × 109 1.69 × 1033 1.721 × 1016 –7.11 × 1010 6.76 × 1034 6.93 × 1034
        2.0 × 106 8.712 × 1014 –3.87 × 109 4.46 × 1032 8.592 × 1015 –3.82 × 1010 1.78 × 1034 1.83 × 1034
        2.0 × 107 2.749 × 1013 –1.33 × 107 4.82 × 1029 2.711 × 1014 –1.31 × 108 1.93 × 1031 1.98 × 1031
        DownLoad: CSV

        Source P/s $\dot{ P}$/10–11s–1 ${\tau _{\rm{c}}}$/ka Age Est/ka Associa. Method $L_{\rm{X}}^\infty $/erg·s–1 Lrot./erg·s–1 Refs.
        SGR 0418+5729 9.07839 0.0004(1) 36000 550 SMC 磁热模拟 9.60 × 1029 3.1 × 1029 [46,48,49]
        1E 2259+586 6.97904 0.04837 230.0 10—20 SNR CTB109 SNR年龄 1.70 × 1034 7.37 × 1031 [5052]
        4U 0142+61 8.68870 0.2022(4) 68.0 68.0 SMC 特征年龄 1.05 × 1035 1.85 × 1032 [49,50,53]
        CXOU J164710 10.61 < 0.04 > 420.0 > 420 Cluster Wdl 特征年龄 4.50 × 1032 < 1.88 × 1031 [54,55]
        1E 1048–5937 6.45787 2.250 4.5 4.5 GSH 288.3–0.5–28 特征年龄 4.90 × 1034 4.65 × 1033 [5658]
        CXOU J010043 8.02039 1.88(8) 6.8 6.8 SMC 特征年龄 6.50 × 1034 2.33 × 1033 [49,59]
        1RXS J170849 11.00502 1.9455(13) 9.0 9.0 MC 13A 特征年龄 4.20 × 1034 7.37 × 1032 [50,55]
        1E 1841–045 11.78898 4.092(15) 4.70 0.5—1.0 SNR Kes73 SNR年龄 1.84 × 1035 1.47 × 1033 [50,60]
        SGR 0501+4516 5.76206 0.594(2) 16.00 4—6 SNR HB9 SNR年龄 8.10 × 1032 1.85 × 1033 [6163]
        SGR 0526–66 8.054(2) 3.8(1) 3.400 4.8 SNR N49 SNR年龄 1.89 × 1035 4.22 × 1033 [64,65]
        SGR 1900+14 5.19987 9.2(4) 0.900 3.98—7.9 Massive star Cluster 自行年龄 9.00 × 1034 3.79 × 1034 [6668]
        SGR 1806–20 7.54773 49.5000 0.240 0.63—1.0 W31, MC13A 自行年龄 1.63 × 1035 6.68 × 1034 [68,69]
        XTE J1810–197 5.54035 0.777(3) 11 11 W31, MC13A 特征年龄 4.3 × 1031 2.93 × 1035 [69,70]
        IE 1547–5408 2.07212 4.77 0.69 0.63 SNR G327.24–013 SNR年龄 1.3 × 1033 3.11 × 1035 [71,72]
        3XXMJ185246 11.5587 < 0.014 > 1300 5—7 SNR Kes 79 SNR年龄 < 4.0 × 1038 < 4.8 × 1038 [73,74]
        CXOU J171405 3.82535 6.40 0.95 5 CTB 37B SNR年龄 5.6 × 1034 6.13 × 1034 [45,75]
        SGR 1627–41 2.59458 1.9(4) 2.2 5.0 SNR G337.0–0.1 SNR年龄 3.6 × 1033 5.87 × 1034 [76,77]
        Swift J1822–1606 8.43772 0.0021(2) 6300 6300 HII region 特征年龄 < 4.0 × 1029 2.0 × 1030 [78,79]
        Swift J1834–0864 2.4823 0.796(12) 4.9 60200 SNR W41 SNR年龄 < 8.4 × 1030 3.1 × 1034 [80,81]
        PSR J1622–4950 4.326(1) 1.7(1) 4.0 ≤ 6.0 SNR G33.9+0.0 SNR年龄 4.40 × 1032 1.18 × 1034 [63,82]
        SGR J1745–2900 3.7636 1.385(15) 4.30 4.30 Galaxy Center 特征年龄 1.10 × 1032 1.47 × 1034 [83,84]
        PSR J1846–0258 0.32657 0.71070 0.73 0.9-4.3 SNR Kes75 SNR年龄 1.90 × 1034 8.10 × 1036 [49,85]
        DownLoad: CSV

        Source Bp(0)/G PL Ind. $T_{BB}^{\infty} $/keV D/kpc $F_{\rm{X}}^\infty $/erg·s–1·cm2 $L_{\rm{X}}^\infty $/erg·s–1 $L_B^{\rm{a}}$/erg·s–1 $\eta _{}^{\rm{a}}$/% $L_B^{\rm{b}}$/erg·s–1 $\eta _{}^{\rm{b}}$/% Ref.
        SGR 0418–5729 3.0 × 1014 0.30 2.0 2.0 × 10–11 9.60 × 1029 5.35 × 1032 0.31 2.26 × 1032 0.74 [48,49,50]
        1E 2259+586 5.0 × 1014 3.75(4) 0.37(1) 3.2(2) 1.41 × 10–11 1.70 × 1034 6.5(1.0) × 1035 22(6) 1.4(3) × 1035 47(8) [5052]
        CXOU J164710 3.0 × 1014 3.86(22) 0.59(6) 3.9(7) 2.54 × 10–11 4.50 × 1032 8.65 × 1033 9 3.62 × 1033 21 [50,54,95]
        3XXMJ185246 3.0 × 1014 0.6 7.1 1.0 × 10–15 4.0 × 1033 3.53 × 1034 3.11 × 1035 [73,74]
        4U 0142+61 3.0 × 1015 3.88(1) 0.41 3.6(4) 6.97 × 10–11 1.0 × 1035 1.14 × 1036 15 4.85 × 1035 37 [50,53,96]
        1E1048–5937 1.0 × 1015 3.14(11) 0.56(1) 9.0(1.7) 5.11 × 10–11 4.90 × 1034 7.19 × 1035 12 3.08 × 1035 27 [50,57,58]
        CXOU J010043 1.0 × 1015 0.30(2) 62.4(1.6) 1.40 × 10–11 6.50 × 1034 6.82 × 1035 16 3.22 × 1035 34 [50,97]
        IRXS J170849 1.0 × 1015 2.79(1) 0.456 3.8(5) 2.43 × 10–11 4.20 × 1034 7.65 × 1035 9 3.23 × 1035 21 [50,53,96]
        1E1841–045 1.0 × 1015 1.9(2) 0.45(3) 8.6(1.1) 2.13 × 10–11 1.84 × 1035 1.2(2) × 1036 26(4) 5.9(7) × 1035 46(4) [50,98,99]
        SGR 0526–66 3.0 × 1015 $2.5_{ - 0.12}^{ + 0.11}$ 0.44(2) 53.6(1.2) 5.50 × 10–11 1.89 × 1035 2.28 × 1036 8 7.11 × 1035 26 [50,65]
        SGR1900+14 3.0 × 1015 1.9(1) 0.47(2) 13.0(1.2) 4.82 × 10–12 9.0 × 1034 2.2(6) × 1036 7(1) 7.8(8) × 1035 19(2) [50,66]
        SGR1806–20 3.0 × 1015 1.6(1) 0.55(7) 8.8(1.6) 1.81 × 10–12 1.63 × 1035 3.8(4) × 1036 7.4(8) 8.9(9) × 1035 26(2) [50,69]
        注: a表示$\sigma = 2.52 \times {10^{24} }\; { {\rm{s} }^{ {\rm{ - 1} } } }$的情况; b表示$\sigma = 8.75 \times {10^{24} } \;{ {\rm{s} }^{ {\rm{ - 1} } } }$的情况; PL Ind. 表示幂率指数.
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

        [65]

        [66]

        [67]

        [68]

        [69]

        [70]

        [71]

        [72]

        [73]

        [74]

        [75]

        [76]

        [77]

        [78]

        [79]

        [80]

        [81]

        [82]

        [83]

        [84]

        [85]

        [86]

        [87]

        [88]

        [89]

        [90]

        [91]

        [92]

        [93]

        [94]

        [95]

        [96]

        [97]

        [98]

        [99]

        [100]

        [101]

        [102]

      • [1] Chu Peng-Cheng, Liu He, Du Xian-Bin.Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101.doi:10.7498/aps.73.20231649
        [2] Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He.Modified pressure of relativistic electrons in a superhigh magnetic field. Acta Physica Sinica, 2023, 72(3): 030502.doi:10.7498/aps.72.20220092
        [3] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin.Proto-magnetars within quasiparticle model. Acta Physica Sinica, 2022, 71(22): 222101.doi:10.7498/aps.71.20220795
        [4] Zhao Shi-Yi, Liu Cheng-Zhi, Huang Xiu-Lin, Wang Yi-Bo, Xu Yan.Effects of strong magnetic field on moment of inertia and surface gravitational redshift in neutron star. Acta Physica Sinica, 2021, 70(22): 222601.doi:10.7498/aps.70.20211051
        [5] Bi Wei-Hong, Chen Jun-Gang, Zhang Sheng, Yu Teng-Fei, Zhang Yan-Jun, Hou Xu-Tao.Study on the influence factors of the concentration of heavy metals by spectrophotometry. Acta Physica Sinica, 2017, 66(7): 074206.doi:10.7498/aps.66.074206
        [6] Song Dong-Ling, Ming Liang, Shan Hao, Liao Tian-He.Landau-level stability of electrons in superstrong magnetic fields and its influences on electron Fermi energy. Acta Physica Sinica, 2016, 65(2): 027102.doi:10.7498/aps.65.027102
        [7] Liu Zhong-Shen, Tegus O, Ou Zhi-Qiang, Fan Wen-Di, Song Zhi-Qiang, Ha Si Chao Lu, Wei Wei, Han Rui.Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet. Acta Physica Sinica, 2015, 64(4): 047103.doi:10.7498/aps.64.047103
        [8] Gu Zhuo-Wei, Luo Hao, Zhang Heng-Di, Zhao Shi-Cao, Tang Xiao-Song, Tong Yan-Jin, Song Zhen-Fei, Zhao Jian-Heng, Sun Cheng-Wei.Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion. Acta Physica Sinica, 2013, 62(17): 170701.doi:10.7498/aps.62.170701
        [9] Yan Jun, Zeng Si-Liang, Zou Shi-Yang, Ni Fei-Fei, He Jian-Feng.Calculations of low-lying states of hydrogen atom in strong magnetic field by generalized pseudospectral method. Acta Physica Sinica, 2011, 60(4): 043201.doi:10.7498/aps.60.043201
        [10] Zheng Yu-Jun, Xu Xian-Gang, Ji Zi-Wu.Optical properties of exciton and charged exciton in undoped ZnSe/BeTe type-Ⅱ quantum wells under high magnetic fields. Acta Physica Sinica, 2011, 60(4): 047805.doi:10.7498/aps.60.047805
        [11] Zhou Yi, Wu Guo-Song, Dai Wei, Li Hong-Bo, Wang Ai-Ying.Accurate determination of optical constants and thickness of absorbing thin films by a combined ellipsometry and spectrophotometry approach. Acta Physica Sinica, 2010, 59(4): 2356-2363.doi:10.7498/aps.59.2356
        [12] Liu Jing-Jing.Effect of superstrong magnetic field on neutrino energy loss of the nuclide 56Fe, 56Co, 56Ni, 56Mn and 56Cr by electron capture in the crust of neutron stars. Acta Physica Sinica, 2010, 59(7): 5169-5174.doi:10.7498/aps.59.5169
        [13] Zhao An-Kun, Ren Zhong-Ming, Ren Shu-Yang, Cao Guang-Hui, Ren Wei-Li.Effect of high magnetic field on Te films prepared by vacuum evaporation. Acta Physica Sinica, 2009, 58(10): 7101-7107.doi:10.7498/aps.58.7101
        [14] Zhang Jie, Liu Men-Quan, Wei Bing-Tao, Luo Zhi-Quan.The effect of strong magnetic field on proton branch of modified URCA process. Acta Physica Sinica, 2008, 57(9): 5448-5451.doi:10.7498/aps.57.5448
        [15] Wang Wei, Zhang Xi-Juan, Yang Cui-Hong, Cheng Hai-Ying.ThemagnetocrystallineanisotropyofEr3 Ga5O1 2underhighmagneticfield. Acta Physica Sinica, 2002, 51(12): 2846-2848.doi:10.7498/aps.51.2846
        [16] KANG JUN-YONG, TOZAWA SHINIRRO.CRYSTAL GROWTH IN A HIGH MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(2): 324-329.doi:10.7498/aps.45.324
        [17] CHEN SHI-GANG.COMMENTS ON "TRANSPORT PROCESS UNDER STRONG MAGNETIC FIELD". Acta Physica Sinica, 1982, 31(5): 690-692.doi:10.7498/aps.31.690
        [18] ZHANG YU-HENG.THEORY OF OPTIMUM DESIGNING FOR THE SYSTEMS OF PULSE STRONG MAGNETIC FIELD. Acta Physica Sinica, 1980, 29(9): 1121-1134.doi:10.7498/aps.29.1121
        [19] HUANG BEN-LI, PEI AI-LI, WANG CHUN-DEH.EFFECTS OF ALCOHOLS ON ATOMIC-ABSORPTION AND EMISSION FLAME PHOTOMETRIC DETERMINATION OF SODIUM. Acta Physica Sinica, 1966, 22(7): 733-742.doi:10.7498/aps.22.733
        [20] G. O. STRIKER.ULTRAPHOTOMETER USING MAGNETICALLY MODULATED PHOTOMULTIPLIER. Acta Physica Sinica, 1958, 14(1): 23-36.doi:10.7498/aps.14.23
      Metrics
      • Abstract views:10239
      • PDF Downloads:59
      • Cited By:0
      Publishing process
      • Received Date:19 May 2019
      • Accepted Date:12 July 2019
      • Available Online:01 September 2019
      • Published Online:20 September 2019

        返回文章
        返回
          Baidu
          map