-
In this paper, the dynamics of hollow cathode discharge in argon is simulated by fluid model. In the numerical model considered are 31 reaction processes, including direct ground state ionization, ground state excitation, stepwise ionization, Penning ionization, de-excitation, two-body collision, three-body collision, radiation transition, elastic collision, and electron-ion recombination reaction. The electron density, Ar +density, Ar 4s, Ar 4p, Ar 3dparticle density, electric potential and electric field intensity are calculated. At the same time, the contributions of different reaction mechanisms for the generation and consumption of electron, Ar 4sand Ar 4pare simulated. The results indicate that hollow cathode effect exists in the discharge, and the Ar 4sdensity is much higher than electron density. The penning ionization 2Ar 4s→ Ar ++ Ar ++ e and stepwise ionization involving Ar 4smake important contributions to the generation of new electrons and the balance of electron energy. In particular, the penning ionization reaction 2Ar 4s→ Ar 2 ++ e, which is generally ignored in previous simulation, also has an significant influence on electron generation. The spatial distribution of excited state argon atomic density is the result of the balance between the formation and consumption of various particles during discharge. Radiation reaction Ar 4p→ Ar 4s+ hνis the main source of Ar 4sgeneration and the main way to consume Ar 4p. Ar 4s+ e →Ar 4p+ e is the main way of Ar 4sconsumption and Ar 4pproduction. The simulation results also show that the Ar 4pdensity distribution can better reflect the optical characteristics in the hollow cathode discharge.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] -
反应
标号反应方程 反应
标号反应方程 G1 Ar + e → Ar++ 2e[12] G17 Ar4s+ e → Ar3d+ e[16] G2 Ar + e → Ar4s+ e[13] G18 Ar4s+ e → Ar4p+ e[12] G3 Ar + e → Ar4p+ e[13] G19 Ar4p+ e → Ar4s+ e[12] G4 Ar + e → Ar3d+ e[13] G20 Ar4p→ Ar4s+hν[17] G5 Ar4s+ e → Ar++ 2e[14] G21 Ar3d→ Ar4p[16] G6 Ar4p+ e → Ar++ 2e[14] G22 Ar++ 2e → Ar + e[14] G7 2Ar4s→ Ar++ Ar + e[15] G23 Ar++ e → Ar4s[12] G8 2Ar4p→ Ar++ Ar + e[16] G24 Ar++ 2e → Ar4s+ e[12] G9 2Ar4s→ Ar2++ e[17] G25 Ar2++ e → 2Ar[19] G10 Ar4s+ Ar → 2Ar[18] G26 Ar2++ e → Ar++ Ar + e[20] G11 Ar4s+ 2Ar → 3Ar[18] G27 Ar2++ e → Ar4s+ Ar[16] G12 2Ar + Ar+→ Ar2++ Arr[16] G28 Ar2++ e → 2Ar4s[21] G13 Ar4s+ 2Ar → Ar2+ Ar[15] G29 Ar2++ e → Ar4p+ Ar[16] G14 Ar4s+ e → Ar + e[12] G30 Ar2++ e → Ar3d+ Ar[16] G15 Ar4s→ Ar +hν[12] G31 Ar + e → Ar + e[22] G16 Ar4p+e → Ar + e[12] 反应标号 反应方程 速率平均值/cm–3·s–1 G1 Ar + e → Ar++ 2e 2.5 × 1017 G5 Ar4s+ e → Ar++ 2e 2.6 × 1016 G6 Ar4p+ e → Ar++ 2e 1.1 × 1015 G7 2Ar4s→ Ar++ Ar + e 3.9 × 1016 G8 2Ar4p→ Ar++ Ar + e 2.9 × 1012 G10 2Ar4s→ Ar2++ e 3.8 × 1016 反应标号 反应方程 源项平均值/cm–3·s–1 G2 Ar + e → Ar4s+ e 1.6 × 1017 G19 Ar4p+ e → Ar4s+ e 9.1 × 1015 G20 Ar4p→ Ar4s+hν 11.8 × 1017 G24 Ar++ 2e → Ar4s+ e 55.3 G23 Ar + e → Ar4s 4.4 × 1012 G27 Ar2++ e → Ar4s+ Ar 4.3 × 1015 G28 Ar2++ e → 2Ar4s 3.9 × 1014 反应标号 反应方程 源项平均值/cm–3·s–1 G5 Ar4s+ e → Ar++ 2e 2.6 × 1016 G7 2Ar4s→ Ar++Ar + e 7.9 × 1016 G9 Ar4s+ Ar → 2Ar 3.0 × 1015 G10 2Ar4s→ Ar2++ e 7.6 × 1016 G11 Ar4s+ 2Ar → 3Ar 4.5 × 1015 G13 Ar4s+ 2Ar → Ar2+ Ar 3.5 × 1016 G14 Ar4s+ e → Ar + e 1.2 × 1015 G15 Ar4s→ Ar +hν 1.9 × 1017 G17 Ar4s+ e → Ar3d+ e 1.2 × 1017 G18 Ar4s+ e → Ar4p+ e 8.2 × 1017 反应标号 反应方程 源项平均值/cm–3·s–1 G3 Ar + e → Ar4p+ e 2.2 × 1017 G18 Ar4s+ e → Ar4p+ e 8.2 × 1017 G21 Ar3d→ Ar4p 1.4 × 1017 G29 Ar2++ e → Ar4p+ Ar 4.3 × 1014 反应标号 反应方程 源项平均值/cm–3·s–1 G6 Ar4p+ e→Ar++ 2e 1.1 × 1015 G8 2Ar4p→Ar++ Ar + e 5.8 × 1012 G16 Ar4p+e→Ar + e 1.3 × 1013 G19 Ar4p+ e→Ar4s+ e 9.1 × 1015 G20 Ar4p→Ar4s+hν 11.8 × 1017 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37]
Catalog
Metrics
- Abstract views:8003
- PDF Downloads:102
- Cited By:0