Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing
    PDF
    HTML
    Get Citation
    • The investigation of spectroscopic information is important for understanding the mechanisms of molecular photochemical and photophysical reactions. As a prototype to study the electronic structures and spectra of diatomic molecular systems, the vibration-rotational spectra of alkali dimer and its ions have aroused considerable research interest in the last two decades. Single-reference and multi-reference coupled cluster theory in combination with correlation consistent Gaussian basis set are adopted to study the ground-state potential energy curves of 7Li 2 (0,± 1)molecular systems. The correlation effect and relativistic effect of all the electrons are taken into account in the calculation. And the spectroscopic constants, including the equilibrium internuclear distance R e, the harmonic vibrational frequency ω e, the anharmonic constant ω e x e, the equilibrium rotational constant B e, and the dissociation energy D eof the molecular system and vibration-rotational energy level information of the ground states are obtained by solving the radial Schrödinger equations. The calculated spectroscopic constants of the neutral and positive ion system accord well with the experimental values; however for the negative ion system, the calculation of equilibrium internuclear distance needs further improving, and other spectroscopic constants are consistent well with the experimental values. The present computational results indicate that the ground state wave functions of neutral and positive ion systems have obvious single reference configuration characteristics, while the ground state of negative ion molecule system should be described with multireference configuration wave functions. The vibration-rotational energy levels of ground state with different theoretical methods are in good agreement with the experimental values. The vibrational-rotational energy levels and spectroscopic constants of neutral and positive ion systems are well reproduced, and some experimental information about spectrum is still lacking. Although the difference among the equilibrium internuclear distances for the ground state of the negative ion, obtained from different theoretical methods are still existent, the results of the vibrational level interval accord well with each other. This study provides useful information about spectrum for accurately investigating the electronic structures and spectra of the ground state of Li 2molecular system and its two isotopic molecules, especially for the negative ion system with little information about spectrum.
          Corresponding author:Ma Ri,rma@jlu.edu.cn; Yan Bing,yanbing@jlu.edu.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 91750104, 11574114, 11874177), and the Jilin Provincial National Science Foundation, China (Grant No. 20160101332JC).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

      • Method Re ωe/cm–1 ωexe/cm–1 Be/cm–1 De/eV
        vCCSD(T)/TZa 2.6992 346.3556 2.6687 0.6596 1.038
        CCSD(T)/TZ 2.6770 350.5609 2.7163 0.6706 1.046
        CCSD(T)/QZ 2.6742 351.7784 2.7238 0.6720 1.052
        CCSD(T)/5Z 2.6734 352.0222 2.7285 0.6724 1.053
        实验b 2.6734 351.42295 2.4417 0.66824 1.060
        注:a未包含1s轨道电子关联;b激光诱导荧光傅里叶变换谱(LIF FTS)实验PKR拟合值[2,6].
        DownLoad: CSV

        Vibrational levels 本次结果 理论a 实验b
        0 0 0 0
        1 346.17 346.05 346.46
        2 687.11 686.65 687.86
        3 1022.78 1021.71 1024.08
        4 1353.13 1351.15 1355.01
        5 1678.11 1674.88 1680.54
        6 1997.67 1992.81 2000.56
        7 2311.72 2304.85 2314.95
        8 2620.21 2610.92 2623.58
        9 2923.03 2910.90 2926.35
        10 3220.09 3204.70 3223.11
        11 3511.29 3492.23 3513.74
        12 3796.49 3773.36 3798.10
        13 4075.58 4048.00 4076.05
        14 4348.39 4316.02 4347.45
        15 4614.78 4577.31 4612.16
        16 4874.55 4831.74 4870.02
        17 5127.52 5079.52 5120.86
        18 5373.46 5319.52 5364.53
        19 5612.14 5552.59 5600.84
        20 5843.27 5778.25 5829.63
        21 6066.57 5996.35 6050.69
        22 6281.67 6206.72 6263.83
        23 6488.16 6409.20 6468.84
        24 6685.58 6603.59 6665.49
        RMS 8.68(0.16%) 33.93(0.65%)
        注:aFCIPP计算值[3],bLIF FTS实验值[2,6].
        DownLoad: CSV

        v Bv/cm–1 Dv/10-4cm–1
        Expt.[2,6] This work Expt.[2,6] This work
        0 0.66907 0.66882 0.0987
        1 0.66196 0.66171 0.0991
        2 0.65479 0.65453 0.0996
        3 0.64754 0.64728 0.1002
        4 0.64019 0.63995 0.1007
        5 0.63275 0.63252 0.1014
        6 0.62521 0.62499 0.1021
        7 0.61754 0.61733 0.1028
        8 0.60974 0.60954 0.1037
        9 0.60180 0.60160 0.1046
        10 0.59368 0.59348 0.1056
        11 0.58540 0.58518 0.1068
        12 0.57692 0.57667 0.1080
        13 0.56822 0.56793 0.1093
        14 0.55918 0.55892 0.1097 0.1108
        15 0.55000 0.54961 0.1119 0.1123
        16 0.54055 0.53995 0.1143 0.1138
        17 0.53061 0.52990 0.1146 0.1152
        18 0.52044 0.51939 0.1180 0.1165
        19 0.50992 0.50834 0.1215 0.1175
        20 0.49885 0.49667 0.1246 0.1181
        21 0.48726 0.48429 0.1265 0.1185
        22 0.47845 0.47109 0.1182 0.1187
        23 0.46246 0.45698 0.1340 0.1190
        24 0.44913 0.44183 0.1401 0.1200
        DownLoad: CSV

        Species Method Re ωe/cm–1 ωexe/cm–1 Be/cm–1 De/eV
        Li2+ 本次结果a 3.0986 262.7599 1.5640 0.5005 1.297
        本次结果a2 3.1337 258.8211 1.5413 0.4893 1.279
        本次结果a3 3.1038 262.3548 1.5669 0.4988 1.294
        MPb 3.122 263.08 1.2954 0.4945 1.2976
        CIc 3.099 263.76 0.5006 1.2945
        DMCd 3.11 266.2 1.593 0.4753 1.2965
        实验[5,7] 3.11 262 ± 2 1.7 ± 0.5 0.496 ± 0.002 1.2973
        Li2 本次结果a 3.0265 230.6457 1.5881 0.5247 0.850
        本次结果a3 3.0396 231.1024 2.3115 0.5201 0.845
        DMCd 3.10 235.3 3.166 0.4652 0.7733
        MRDCIe 3.062 236.2 2.42 0.857
        CCSD(T)f 3.00 240.7 3.166 0.5238 0.9085
        实验[10] 3.094 ± 0.015 232 ± 35 0.502 ± 0.005 0.865 ± 0.022(D0)
        注:aRCCSD(T)/5Z;a2vMRCCSD/TZ + 4s2p(未包含1s的电子关联);a3MRCCSD/TZ + 4s2p(包含1s的电子关联);bmodel potential (MP) method[25];cconfiguration interaction (CI) with effective core potential[4];ddiffusion quantum Monte-Carlo (DMC) method[12];emultireference singly and doubly CI (MRDCI)[11];fCCSD(T, full)/cc-pv5z[12].
        DownLoad: CSV

        v Li2+ Li2
        理论a 理论b 理论c 本次结果 理论c 本次结果
        0 259.51 260 259.74 259.74 227.53 228.64
        1 256.30 257 256.54 256.54 222.71 223.96
        2 253.11 254 253.35 253.35 217.93 219.69
        3 249.95 251 250.19 250.19 213.21 216.12
        4 246.81 248 247.04 247.04 208.54 213.32
        5 243.68 244 243.92 243.92 203.95 211.08
        6 240.57 241 240.81 240.81 199.42 208.91
        7 237.49 236 237.72 237.72 194.97 206.46
        8 234.41 235 234.65 234.65 190.61 203.52
        9 231.35 232 231.59 231.59 186.34 200.06
        10 228.31 228 228.55 228.55 182.16 196.15
        11 225.28 226 225.51 225.51 178.08 191.88
        12 222.26 222 222.50 222.50 174.12 187.33
        13 219.24 220 219.48 219.48 170.26 182.59
        14 216.24 216 216.48 216.48 166.53 177.72
        15 213.24 214 213.48 213.48 162.92 172.77
        16 210.25 210 210.50 210.50 159.45 167.78
        17 207.26 207 207.50 207.50 156.11 162.77
        18 204.28 205 204.53 204.53 152.91 157.79
        19 201.30 201 201.55 201.55 149.87 152.82
        注:aCCSD(T, FULL)/aug-cc-Pcvqz[12];bMP[25];cDMC[12].
        DownLoad: CSV

        v Bv/cm–1 Dv/10-4cm–1
        Li2+ Li2 Li2+ Li2-
        0 0.49776 0.52021 0.07223 0.10558
        1 0.49235 0.51129 0.07168 0.10438
        2 0.48698 0.50214 0.07114 0.10106
        3 0.48164 0.49226 0.07062 0.09317
        4 0.47635 0.48106 0.07011 0.07966
        5 0.47109 0.46824 0.06961 0.06296
        6 0.46586 0.45407 0.06912 0.04741
        7 0.46067 0.43920 0.06865 0.03586
        8 0.45551 0.42426 0.06819 0.02862
        9 0.45037 0.40969 0.06775 0.02462
        10 0.44527 0.39571 0.06732 0.02265
        11 0.44019 0.38238 0.06690 0.02180
        12 0.43513 0.36971 0.06649 0.02155
        13 0.43009 0.35766 0.06611 0.02159
        14 0.42507 0.34617 0.06573 0.02177
        15 0.42007 0.33520 0.06537 0.02201
        16 0.41508 0.32469 0.06503 0.02226
        17 0.41010 0.31461 0.06470 0.02252
        18 0.40514 0.30492 0.06439 0.02276
        19 0.40018 0.29558 0.06410 0.02300
        20 0.39522 0.28656 0.06382 0.02324
        21 0.39026 0.27784 0.06356 0.02347
        22 0.38531 0.26939 0.06332 0.02370
        23 0.38035 0.26120 0.06310 0.02392
        24 0.37538 0.25324 0.06290 0.02416
        DownLoad: CSV

        v G(v)/cm–1 Bv/cm–1 Dv/10-4cm–1
        6Li7Li 6Li2 6Li7Li 6Li2 6Li7Li 6Li2
        0 0 0 0.72431 0.77978 0.1158 0.13429
        1 360 373 0.71629 0.77082 0.11635 0.13495
        2 714 741 0.70819 0.76176 0.11695 0.13568
        3 1063 1102 0.70001 0.75260 0.11761 0.13647
        4 1406 1457 0.69173 0.74333 0.11832 0.13735
        5 1743 1805 0.68333 0.73392 0.11911 0.13832
        6 2074 2148 0.67480 0.72436 0.11999 0.13939
        7 2400 2484 0.66613 0.71462 0.12095 0.14058
        8 2719 2813 0.65729 0.70469 0.12201 0.14189
        9 3032 3135 0.64827 0.69453 0.12318 0.14335
        10 3338 3451 0.63904 0.68412 0.12448 0.14496
        11 3639 3760 0.62958 0.67343 0.12591 0.14673
        12 3932 4062 0.61986 0.66242 0.12747 0.14863
        13 4219 4356 0.60984 0.65104 0.12913 0.15062
        14 4500 4643 0.59949 0.63924 0.13088 0.15262
        15 4773 4922 0.58875 0.62695 0.13262 0.1545
        16 5038 5193 0.57756 0.61407 0.13426 0.1561
        17 5297 5456 0.56584 0.60052 0.13567 0.15725
        18 5547 5710 0.55352 0.58617 0.13671 0.15786
        19 5789 5956 0.54048 0.57089 0.13733 0.15794
        20 6023 6192 0.52662 0.55456 0.13755 0.15775
        21 6249 6418 0.51182 0.53703 0.13757 0.15778
        22 6465 6633 0.49596 0.51815 0.1378 0.15879
        23 6671 6838 0.47890 0.49776 0.13886 0.16187
        24 6866 7031 0.46051 0.47564 0.14162 0.16834
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

      • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu.Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101.doi:10.7498/aps.72.20230615
        [2] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng.Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101.doi:10.7498/aps.71.20220038
        [3] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian.Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [4] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe.Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101.doi:10.7498/aps.67.20180926
        [5] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe.icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301.doi:10.7498/aps.67.20172114
        [6] Wei Chang-Li, Liao Hao, Luo Tai-Sheng, Ren Yin-Shuan, Yan Bing.Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+cation. Acta Physica Sinica, 2018, 67(24): 243101.doi:10.7498/aps.67.20181690
        [7] Wei Chang-Li, Liang Gui-Ying, Liu Xiao-Ting, Yan Pei-Yuan, Yan Bing.Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach. Acta Physica Sinica, 2016, 65(16): 163101.doi:10.7498/aps.65.163101
        [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe.icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102.doi:10.7498/aps.65.033102
        [9] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping.Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101.doi:10.7498/aps.64.243101
        [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao.Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [11] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi.Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [12] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe.MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [13] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue.Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [14] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe.Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102.doi:10.7498/aps.61.243102
        [15] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue.Study on spectroscopic properties of B2 (X3g-, A3u) molecule. Acta Physica Sinica, 2012, 61(20): 203101.doi:10.7498/aps.61.203101
        [16] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao.Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104.doi:10.7498/aps.61.063104
        [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng.Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [18] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng.Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [19] Wang Jie-Min, Sun Jin-Feng.Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan.Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427.doi:10.7498/aps.56.4420
      Metrics
      • Abstract views:6653
      • PDF Downloads:65
      • Cited By:0
      Publishing process
      • Received Date:13 March 2019
      • Accepted Date:10 April 2019
      • Available Online:01 June 2019
      • Published Online:05 June 2019

        返回文章
        返回
          Baidu
          map