\begin{document}${\text{μm}}$\end{document} and a largest grain size of about 2 \begin{document}${\text{μm}}$\end{document} at 180 ℃. The defect density of perovskite film is deduced from the space charge limited current model, showing that it decreases from 5.90 × 1016 cm–3 at 140 ℃ to 2.66 × 1016 cm–3 at 180 ℃. Photovoltaic devices with structure FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au are fabricated to demonstrate the performance. It is found that the devices with an active area of 0.045 cm2 show that with the increase of grain size, the average PCE increases from 14.00% to 17.42%, and the best device shows that its PCE is 17.80% with 4.04% hysteresis index. To show the possibility of scaling up, we fabricate a uniform perovskite thin film with an area of about 72 cm2, and a device with an active area of 1 cm2, which gives a PCE of 13.17% in reverse scan. In summary, our research provides a method of regulating the grain size for the vapor deposition, which can improve device performance by reducing the trap density in perovskite film for suppressing the carrier recombination in grain boundary. Meanwhile, we prepare high performance devices and large area thin films, showing their potential in large area device fabrication and applications. "> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:11085
    • PDF Downloads:145
    • Cited By:0
    Publishing process
    • Received Date:18 December 2018
    • Accepted Date:25 January 2019
    • Available Online:23 March 2019
    • Published Online:05 April 2019

      返回文章
      返回
        Baidu
        map