\begin{document}${\rm{OAM}}_{ \pm l,n}^{ \pm \sigma } = {\rm{HE}}_{l + 1,n}^{{\rm{even}}} \pm {\rm{i}} \times {\rm{HE}}_{l + 1,n}^{{\rm{odd}}}$\end{document}, it can be seen that the OAM mode generated by long period chirally-coupled-cores fiber depends on the higher-order modes supported by the central fiber core. Therefore, the generation and modulation of any order OAM beam can be realized by changing the diameter of the central fiber core in theory. Through theoretical analysis and numerical simulation, the effects of different structure parameters on OAM modes are analyzed, including mode purity, mode transmission loss and effective refractive index. By keeping the propagation constants of the center core and side cores unchanged, the number of side cores has no effect on mode purity nor effective refractive index, but which is not for mode transmission loss. The loss of mode transmission increases with the increase of the number of side cores. However, it does not mean that the less number of side cores is a better case, in that the fiber symmetry and processing technology should also be considered. And the pitch calculated by the formula of phase matching condition can change in value within a certain numerical range without strongly affecting the mode purity and mode transmission loss. Pitch has a great influence on the effective refractive index of modes, therefore the pitch can be under control to change the difference in effective refractive index between OAM modes and reduce crosstalk between disparate modes. The distance between the center core and side cores of fiber has little effect on mode purity, great effect on mode transmission loss, but no effect on effective refractive index. Theoretically, the mode purity and mode transmission loss perform better with the distance between two kinds of cores increasing. But it will be limited by the fiber integration level."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:7715
    • PDF Downloads:100
    • Cited By:0
    Publishing process
    • Received Date:15 November 2018
    • Accepted Date:03 January 2019
    • Available Online:12 March 2019
    • Published Online:20 March 2019

      返回文章
      返回
        Baidu
        map