\begin{document}${\text{π}}$\end{document}. It leads one circularly polarized component to be focused and the other diverged. This is essentially the spin-dependent splitting of light field in momentum space, which is caused by Pancharatnam-Berry phase. And then, an ordinary lens is inserted behind the Pancharatnam-Berry phase lens to introduce a dynamic phase modulation. Due to dynamic phase being spin-independent, the constructed lens group can focus the photons with different spin states at different focal points longitudinally under the appropriate conditions. In other words, the lens group has two spin-dependent focal points. The two focal points split the photons with different spin states in the longitudinal direction. The longitudinal spin-dependent splitting is dependent on the focal lengths of the two lens and the distance between the two lenses. By changing the three parameters, arbitrary longitudinal spin-dependent splitting can be obtained. Lastly, an experimental system is set up to verify the theoretical results. The relationship between the spin-dependent splitting and the distance between the two lenses is measured. By introducing a Glan laser polarizer and a quarter wave-plate, the circularly polarized chirality of the light field at the focal point is also measured. These experimental results are all in good agreement with the theoretical analyses. These results are helpful in understanding the physical origin of photonic spin Hall effect and developing novel photonic devices based on photonic spin Hall effect."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:10625
    • PDF Downloads:211
    • Cited By:0
    Publishing process
    • Received Date:11 November 2018
    • Accepted Date:14 December 2018
    • Available Online:01 March 2019
    • Published Online:20 March 2019

      返回文章
      返回
        Baidu
        map