Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Ma Kun, Chen Zhan-Bin, Huang Shi-Zhong
    PDF
    HTML
    Get Citation
    • A systematical knowledge of the atomic properties in plasma is of great interest for various research areas, such as the explanation of the X-ray radiation from universe, plasma diagnostics, extreme ultraviolet (EUV) and X-ray sources and so on. Among these researches, the detailed information about how the plasma influences the atomic energy level and transition spectrum are crucial for understanding the X-ray emission mechanism and the state of plasma. An analytic calculation method of treating the non-relativistic energy and its relativistic corrections for the multi-electron atoms embedded in weakly coupled plasma is developed based on the Rayleigh-Ritz variation method. The systematical investigations are performed for the ground state 1s 2 1S, single excited states 1sns 1,2S ( n= 2−5), 1s np 1,3P ( n= 2−5) and double excited state 2s2p 1P of Ar 16+ion in weak coupled plasma. The analytic formulas for calculating the non-relativistic energy and its relativistic correction energy are derived, which include mass correction, one and two-body Darwin correction, spin-spin contact interaction and orbit-orbit interaction. All the angular integration spin sums involved in the problem are worked out explicitly by using the irreducible theory. The influence of plasma on non-relativistic energy and relativistic correction energy are discussed. The results show that the mass correction and the one-body Darwin correction are the main ones among the terms of relativistic correction, and are three orders of magnitude greater than the other relativistic terms. The plasma shielding effect mainly affects the non-relativistic energy, and has little effect on the relativistic correction. At the same time, it has a more significant selectivity for the electronic configuration. Further research shows that the influence of plasma on the energy of the outer shell electron is greater than that of the inner shell electron. With the increase of the plasma shielding parameters, the outer shell electron extends outward, and the higher the excited state, the greater the degree of extension is. This work should be useful for astrophysical applications where such a plasma environment exists.
          Corresponding author:Ma Kun,makun@hsu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11804112, 11504421), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJHS2015B01).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

      • u ${\alpha _{1{\rm{s}}}}$ ENR EMC ED1 ΔERS ET Ref.[20] Ref.[25,26]
        0 5.6875 −32.3477 −0.0696508 0.0587822 −0.01087 −32.35857 −32.4176 −32.3612
        0.1 5.68614 −31.1633 −0.0695843 0.0587401 −0.01084 −31.17414 −31.2324 −31.177
        0.2 5.68218 −30.0095 −0.0693905 0.0586174 −0.01077 −30.02027 −30.079 −30.0237
        0.3 5.67577 −28.8854 −0.0690781 0.0584193 −0.01066 −28.89606 −28.9557
        0.4 5.66706 −27.7899 −0.0686549 0.0581507 −0.01050 −27.80040 −27.8614
        0.5 5.65616 −26.7223 −0.0681282 0.0578158 −0.01031 −26.73261 −26.7963 −26.7395
        0.6 5.64318 −25.6817 −0.067505 0.0574187 −0.01009 −25.69179 −25.7576
        0.7 5.62821 −24.6674 −0.0667916 0.0569630 −0.00983 −24.67723 −24.7457
        0.8 5.61134 −23.6788 −0.0659942 0.0564522 −0.00954 −23.68834 −23.7006 −23.7594
        0.9 5.59263 −22.7151 −0.0651186 0.0558895 −0.00923 −22.72433 −22.7986
        1.0 5.57215 −21.7758 −0.0641701 0.0552778 −0.00889 −21.78469 −21.8629
        DownLoad: CSV

        2S+1 n 1sns2S+1S 1snp2S+1P 2snp2S+1P
        ${\alpha _{1{\rm{s}}}}$ ${\alpha _{n{\rm{s}}}}$ ENR ${\alpha _{1{\rm{s}}}}$ ${\alpha _{n{\rm{p}}}}$ ENR ${\alpha _{2{\rm{s}}}}$ ${\alpha _{n{\rm{p}}}}$ ENR
        1 1 17.6875 −312.848
        2 17.9324 17.3433 −198.384 18.0107 16.9176 −197.969 17.4113 17.8229 −77.601
        3 17.9815 17.2194 −178.14 18.0008 16.9725 −178.018 17.9428 17.2934 −56.8575
        4 17.9924 17.1623 −171.068 18.0001 16.9852 −171.017 17.9766 17.2143 −49.655
        5 17.9961 17.129 −167.799 18 16.9901 −167.773 17.9882 17.1692 −46.3425
        3 2 18.0137 17.1931 −199.196 17.9577 17.266 −198.504
        3 18.0031 17.1286 −178.355 17.99 17.1509 −178.162
        4 18.0012 17.0962 −171.155 17.9961 17.1079 −171.076
        5 18.0006 17.0768 −167.843 17.9981 17.0845 −167.803
        DownLoad: CSV

        u ${\alpha _{1{\rm{s}}}}$ ENR EMC ED1 ΔERS ET
        0 17.6875 −312.848 −6.51488 5.30399 −1.21089 −314.05889
        0.1 17.6871 −309.263 −6.51425 5.30360 −1.21065 −310.47365
        0.2 17.6858 −305.708 −6.51238 5.30246 −1.20992 −306.91792
        0.3 17.6837 −302.184 −6.50929 5.30057 −1.20872 −303.39272
        0.4 17.6808 −298.688 −6.50501 5.29796 −1.20705 −299.89505
        0.5 17.6771 −295.222 −6.49957 5.29463 −1.20494 −296.42694
        0.6 17.6726 −291.785 −6.49299 5.29061 −1.20238 −292.98738
        0.7 17.6674 −288.377 −6.48530 5.28591 −1.19939 −289.57639
        0.8 17.6614 −284.997 −6.47652 5.28055 −1.19597 −286.19297
        0.9 17.6547 −281.645 −6.46668 5.27453 −1.19215 −282.83715
        1.0 17.6473 −278.32 −6.45580 5.26787 −1.18793 −279.50793
        DownLoad: CSV

        u ${\alpha _{2{\rm{s}}}}$ ${\alpha _{2{\rm{p}}}}$ ENR EMC ED1 ED2 ESSC EOO ΔERS ET
        0 17.4113 17.8229 −77.6010 −0.59499 0.31621 −8.39310 × 10−4 1.67862 × 10−3 −0.0006009 −0.27854 −77.87954
        0.1 17.4043 17.8174 −74.0566 −0.59406 0.31583 −8.38360 × 10−4 1.67672 × 10−3 −6.00393 × 10−4 −0.27800 −74.33460
        0.2 17.3839 17.8014 −70.6207 −0.59139 0.31472 −8.35602 × 10−4 1.67120 × 10−3 −5.98927 × 10−4 −0.27644 −70.89714
        0.3 17.351 17.7755 −67.2898 −0.58711 0.31294 −8.31163 × 10−4 1.66233 × 10−3 −5.96551 × 10−4 −0.27393 −67.56373
        0.4 17.3064 17.7402 −64.0605 −0.58132 0.31053 −8.25157 × 10−4 1.65031 × 10−3 −5.93313 × 10−4 −0.27055 −64.33105
        0.5 17.2508 17.6959 −60.9298 −0.57415 0.30754 −8.17686 × 10−4 1.63537 × 10−3 −5.89259 × 10−4 −0.26637 −61.19617
        0.6 17.1845 17.6429 −57.8948 −0.56569 0.30401 −8.08845 × 10−4 1.61769 × 10−3 −5.84432 × 10−4 −0.26146 −58.15626
        0.7 17.1081 17.5816 −54.9531 −0.55606 0.29998 −7.98720 × 10−4 1.59744 × 10−3 −5.78871 × 10−4 −0.25586 −55.20896
        0.8 17.0219 17.5122 −52.1022 −0.54534 0.29546 −7.87391 × 10−4 1.57478 × 10−3 −5.72611 × 10−4 −0.24966 −52.35186
        0.9 16.9262 17.4349 −49.3398 −0.53361 0.29051 −7.74933 × 10−4 1.54987 × 10−3 −5.65688 × 10−4 −0.24289 −49.58269
        1.0 16.8213 17.3499 −46.6639 −0.52098 0.28514 −7.61414 × 10−4 1.52283 × 10−3 −5.58134 × 10−4 −0.23563 −46.89953
        DownLoad: CSV

        u ${\alpha _{1{\rm{s}}}}$ ${\alpha _{2{\rm{s}}}}$ ENR EMC ED1 ED2 ESSC ΔERS ET
        0 17.9324 17.3433 −198.384 −3.93094 3.07620 −7.249983 × 10−3 1.450003 × 10−2 −0.84749 −199.23149
        0.1 17.9319 17.3364 −194.822 −3.92982 3.07562 −7.245793 × 10−3 1.44916 × 10−2 −0.84695 −195.66895
        0.2 17.9306 17.3164 −191.335 −3.92657 3.07394 −7.233613 × 10−3 1.44672 × 10−2 −0.84540 −192.18040
        0.3 17.9285 17.284 −187.921 −3.92130 3.07121 −7.213953 × 10−3 1.44279 × 10−2 −0.84288 −188.76388
        0.4 17.9256 17.2401 −184.577 −3.91415 3.06749 −7.187233 × 10−3 1.43745 × 10−2 −0.83947 −185.41647
        0.5 17.9218 17.1852 −181.301 −3.90522 3.06284 −7.153833 × 10−3 1.43077 × 10−2 −0.83523 −182.13623
        0.6 17.9173 17.1198 −178.092 −3.89462 3.05729 −7.114063 × 10−3 1.42281 × 10−2 −0.83022 −178.92222
        0.7 17.912 17.0445 −174.947 −3.88245 3.05090 −7.068203 × 10−3 1.41364 × 10−2 −0.82448 −175.77148
        0.8 17.906 16.9594 −171.866 −3.86880 3.04371 −7.016463 × 10−3 1.40329 × 10−2 −0.81807 −172.68407
        0.9 17.8992 16.865 −168.847 −3.85377 3.03575 −6.959053 × 10−3 1.39181 × 10−2 −0.81106 −169.65806
        1.0 17.8918 16.7615 −165.889 −3.83745 3.02706 −6.896133 × 10−3 1.37923 × 10−2 −0.80349 −166.69249
        DownLoad: CSV

        u ${\alpha _{1{\rm{s}}}}$ ${\alpha _{2{\rm{s}}}}$ ENR EMC ED1 ΔERS ET
        0 18.0137 17.1931 −199.196 −3.97703 3.10590 −0.87113 −200.06713
        0.1 18.0133 17.1858 −195.635 −3.97594 3.10534 −0.87060 −196.50560
        0.2 18.0122 17.1646 −192.149 −3.97276 3.10370 −0.86906 −193.01806
        0.3 18.0104 17.1305 −188.735 −3.96761 3.10104 −0.86657 −189.60157
        0.4 18.0078 17.0841 −185.392 −3.96062 3.09742 −0.86320 −186.25520
        0.5 18.0046 17.0263 −182.119 −3.95189 3.09289 −0.85900 −182.97800
        0.6 18.0006 16.9574 −178.912 −3.94152 3.08748 −0.85404 −179.76604
        0.7 17.996 16.878 −175.77 −3.92962 3.08124 −0.84838 −176.61838
        0.8 17.9907 16.7885 −172.692 −3.91627 3.07421 −0.84206 −173.53406
        0.9 17.9847 16.6891 −169.676 −3.90156 3.06643 −0.83513 −170.51113
        1.0 17.9781 16.5803 −166.721 −3.88557 3.05792 −0.82765 −167.54865
        DownLoad: CSV

        u ${\alpha _{1{\rm{s}}}}$ ${\alpha _{2{\rm{p}}}}$ ENR EMC ED1 ED2 ESSC EOO ΔERS ET
        0 18.0107 16.9176 −197.969 −3.58167 2.80005 −2.073823 × 10−3 4.147643 × 10−3 −0.0064010 −0.78595 −198.75495
        0.1 18.0103 16.9115 −194.403 −3.58123 2.79986 −2.071283 × 10−3 4.142563 × 10−3 −6.394563 × 10−3 −0.78569 −195.18869
        0.2 18.0091 16.8936 −190.903 −3.57994 2.79929 −2.063883 × 10−3 4.127763 × 10−3 −6.375753 × 10−3 −0.78496 −191.68796
        0.3 18.007 16.8646 −187.467 −3.57782 2.79834 −2.051933 × 10−3 4.103873 × 10−3 −6.345353 × 10−3 −0.78377 −188.25077
        0.4 18.0042 16.8251 −184.094 −3.57490 2.79703 −2.035733 × 10−3 4.071453 × 10−3 −6.304033 × 10−3 −0.78214 −184.87614
        0.5 18.0007 16.7755 −180.783 −3.57121 2.79536 −2.015513 × 10−3 4.031023 × 10−3 −6.252373 × 10−3 −0.78009 −181.56309
        0.6 17.9963 16.7162 −177.532 −3.56677 2.79335 −1.991533 × 10−3 3.983063 × 10−3 −6.190923 × 10−3 −0.77762 −178.30962
        0.7 17.9913 16.6477 −174.339 −3.56161 2.79099 −1.963993 × 10−3 3.927983 × 10−3 −6.120133 × 10−3 −0.77478 −175.11378
        0.8 17.9855 16.57 −171.203 −3.55574 2.78830 −1.933093 × 10−3 3.866193 × 10−3 −6.040453 × 10−3 −0.77155 −171.97455
        0.9 17.979 16.4835 −168.124 −3.54919 2.78527 −1.899033 × 10−3 3.798063 × 10−3 −5.952253 × 10−3 −0.76797 −168.89197
        1.0 17.9718 16.3883 −165.101 −3.54198 2.78193 −1.861983 × 10−3 3.723953 × 10−3 −5.855883 × 10−3 −0.76404 −165.86504
        DownLoad: CSV

        u ${\alpha _{1{\rm{s}}}}$ ${\alpha _{2{\rm{p}}}}$ ENR EMC ED1 EOO ΔERS ET
        0 17.9577 17.266 −198.504 −3.54736 2.77539 6.7643 × 10−3 −0.76521 −199.26921
        0.1 17.9573 17.26 −194.937 −3.54694 2.77522 6.75783 × 10−3 −0.76496 −195.70196
        0.2 17.9562 17.2424 −191.436 −3.54571 2.77469 6.738923 × 10−3 −0.76428 −192.20028
        0.3 17.9543 17.2138 −187.998 −3.54369 2.77381 6.70833 × 10−3 −0.76317 −188.76117
        0.4 17.9517 17.1749 −184.622 −3.54091 2.77260 6.66673 × 10−3 −0.76164 −185.38364
        0.5 17.9483 17.1261 −181.306 −3.53739 2.77106 6.61473 × 10−3 −0.75972 −182.06572
        0.6 17.9443 17.0678 −178.05 −3.53315 2.76919 6.55273 × 10−3 −0.75741 −178.80741
        0.7 17.9396 17.0002 −174.852 −3.52822 2.76700 6.48123 × 10−3 −0.75474 −175.60674
        0.8 17.9342 16.9237 −171.71 −3.52262 2.76450 6.40083 × 10−3 −0.75172 −172.46172
        0.9 17.9281 16.8384 −168.624 −3.516370 2.76170 6.31163 × 10−3 −0.74836 −169.37236
        1.0 17.9214 16.7445 −165.593 −3.509490 2.75859 6.21423 × 10−3 −0.74469 −166.33769
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

      • [1] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Yang Yu-Lin, Dong Zhi-Wei.Physical analysis and numerical simulations of ultra wideband plasma relativistic microwave noise amplifier. Acta Physica Sinica, 2023, 72(5): 058401.doi:10.7498/aps.72.20222061
        [2] He Xin, Jiang Tao, Gao Cheng, Zhang Zhen-Fu, Yang Jun-Bo.A simplified method of calculating electronic energy level populations in nonequilibrium plasmas. Acta Physica Sinica, 2021, 70(14): 145202.doi:10.7498/aps.70.20202119
        [3] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming.Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201.doi:10.7498/aps.68.20190610
        [4] Mu Zhi-Dong.Theoretical study of energy levels and transitions 4s24p3−4s4p4for ions Rh XIII to Cd XVI. Acta Physica Sinica, 2019, 68(6): 063101.doi:10.7498/aps.68.20181976
        [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping.Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101.doi:10.7498/aps.64.243101
        [6] Wang Yu, Chen Zai-Gao, Lei Yi-An.Simulation of 0.14 THz relativistic backward-wave oscillator filled with plasma. Acta Physica Sinica, 2013, 62(12): 125204.doi:10.7498/aps.62.125204
        [7] Hu Feng, Yang Jia-Min, Wang Chuan-Ke, Zhang Ji-Yan, Jiang Gang, Zhu Zheng-He.Influence of electron correlation on Au ions. Acta Physica Sinica, 2011, 60(10): 103104.doi:10.7498/aps.60.103104.1
        [8] Li De-Jun, Mi Xian-Wu, Deng Ke.Energy levels and magnetic moments of the quantum solitary wave in a one-dimensional ferromagnetic chain. Acta Physica Sinica, 2010, 59(10): 7344-7349.doi:10.7498/aps.59.7344
        [9] Sun Yan, Gou Bing-Cong, Zhu Jing-Jing.Energies, fine structures, and Auger widths of the high-lying triply excited states of 2S(m) and 2D(m) (m=2—7) for the “hollow atom” lithium. Acta Physica Sinica, 2010, 59(6): 3878-3884.doi:10.7498/aps.59.3878
        [10] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong.State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703.doi:10.7498/aps.56.5698
        [11] Wang Bin, Tang Chang-Jian, Liu Pu-Kun.Cherenkov radiation of relativistic electron beam in the ion-channel. Acta Physica Sinica, 2006, 55(11): 5953-5958.doi:10.7498/aps.55.5953
        [12] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang.FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808.doi:10.7498/aps.54.2804
        [13] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong.Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220.doi:10.7498/aps.54.3213
        [14] Zeng Xiong-Hui, Zhao Guang-Jun, Zhang Lian-Han, He Xiao-Ming, Hang-Yin, Li Hong-Jun, Xu Jun.The energy levels structure and fluorescence properties of Ce3+ in LaAlO3 single crystals. Acta Physica Sinica, 2005, 54(2): 612-616.doi:10.7498/aps.54.612
        [15] Hou Chun-Feng, Guo Ru-Hai.Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976.doi:10.7498/aps.54.1972
        [16] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing.Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141.doi:10.7498/aps.54.1136
        [17] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong.Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624.doi:10.7498/aps.54.2620
        [18] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi.Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149.doi:10.7498/aps.53.1145
        [19] Zhu Jia-Qi, Wang Jing-He, Meng Song-He, Han Jie-Cai, Zhang Lian-Sheng.The microstructure and properties of tetrahedral amorphous carbon films deposited by filtered arc with accelerating at different energetic grades. Acta Physica Sinica, 2004, 53(4): 1150-1156.doi:10.7498/aps.53.1150
        [20] Mao Hua-Ping, Wang Hong-Yan, Tang Yong-Jian, Zhu Zheng-He, Zheng Sao-Tao.The effects of charge on the potential energy function and energy levels for Cu2n±(n=0,1,2). Acta Physica Sinica, 2004, 53(1): 37-41.doi:10.7498/aps.53.37
      Metrics
      • Abstract views:11731
      • PDF Downloads:44
      • Cited By:0
      Publishing process
      • Received Date:27 October 2018
      • Accepted Date:10 December 2018
      • Available Online:01 January 2019
      • Published Online:20 January 2019

        返回文章
        返回
          Baidu
          map