\begin{document}${\rm B}^2 \Sigma^+$\end{document} state and the cross phenomena are avoided in \begin{document}${\rm A}^2 \Pi$\end{document} and \begin{document}${\rm C}^2 \Pi$\end{document}, \begin{document}${\rm B}^2 \Sigma^+$\end{document} and \begin{document}$3^2 \Sigma^+$\end{document} respectively. The spectrum and molecular constants are in good agreement with the recently obtained theoretical calculations and experimental values except the adiabatic excitation energy. It may be due to the fact that the effect of the interaction of electronic states is taken into account. The transition properties such as Frank-Condon factor and radiation lifetime are also given. It can be seen that the 0-0 band of \begin{document}${\rm B}^2 \Sigma^+$\end{document}\begin{document}${\rm X}^2 \Sigma^+$\end{document} transition has the largest Franck-Condon factor of 0.861288, and the diagonalization is obvious, which is the condition for laser cooling. The lifetime of \begin{document}${\rm B}^2 \Sigma^+$\end{document}\begin{document}${\rm X}^2 \Sigma^+$\end{document} transition is 38.89 ns, which is in accordance with the experimental value 39.6 ns ± l.6 ns. These precise spectral transition characteristics may provide theoretical support for further constructing the laser cooling scheme of Sr35Cl molecule."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Wu Dong-Lan, Yuan Jin-Hong, Wen Yu-Feng, Zeng Xue-Feng, Xie An-Dong
    PDF
    HTML
    Get Citation
    • Sr 35Cl is a candidate system for laser cooling. The spectrum and transition characteristics are very important for constructing laser cooling schemes. In this paper, the spectral properties are analyzed by using the Davidson's modified internal contraction multi-reference interaction (ic-MRCI + Q) method, in combination with the relativistic effective core pseudopotential group (aug-cc-pV5Z-PP) as the base group for the calculation of the Sr atom and the related consistent quintile aug-cc-pV5Z as the Cl atom. The potential energy curves and dipole moments of 14 low excited electron states of Sr 35Cl molecule are optimized. In order to obtain more accurate spectral parameters, nuclear valence electron correlation and relativistic effect correction are introduced into the calculation. Using the LEVEL 8.0 program to fit the modified potential energy curves of 5 bound states, the spectral properties such as spectral constants, vibration energy levels, and molecular constants of the corresponding electron states are obtained. The results show that there is a double potential well in ${\rm B}^2 \Sigma^+$ state and the cross phenomena are avoided in ${\rm A}^2 \Pi$ and ${\rm C}^2 \Pi$ , ${\rm B}^2 \Sigma^+$ and $3^2 \Sigma^+$ respectively. The spectrum and molecular constants are in good agreement with the recently obtained theoretical calculations and experimental values except the adiabatic excitation energy. It may be due to the fact that the effect of the interaction of electronic states is taken into account. The transition properties such as Frank-Condon factor and radiation lifetime are also given. It can be seen that the 0-0 band of ${\rm B}^2 \Sigma^+$ ${\rm X}^2 \Sigma^+$ transition has the largest Franck-Condon factor of 0.861288, and the diagonalization is obvious, which is the condition for laser cooling. The lifetime of ${\rm B}^2 \Sigma^+$ ${\rm X}^2 \Sigma^+$ transition is 38.89 ns, which is in accordance with the experimental value 39.6 ns ± l.6 ns. These precise spectral transition characteristics may provide theoretical support for further constructing the laser cooling scheme of Sr 35Cl molecule.
          Corresponding author:Wu Dong-Lan,wudonglan1216@sina.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11564019, 11147158) and the Science and Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ170654).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • Λ-S态 Te/cm−1 Re/nm $\omega $e/cm−1 $\omega $e$\chi $e/cm−1 Be/cm−1 104αe/cm−1 De/eV Re附近主要电子组态(%)
        $ {{\rm{X}}^{2}}\Sigma^+$ 0.0 0.2575 309.78 0.8682 0.1016 4.131 3.703 6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$24$\text{π}$2(78.8)
        6${\rm{\sigma }}$27$\text{σ}$28$\text{σ}$09$\text{σ}$α3$\text{π}$24$\text{π}$2(7.5)
        理论[26] 0.0 0.255 313 0.93 0.1037
        实验[15] 0.0 0.257 302[27] 0.95[27]
        实验[16] 0.0 302.448 −0.9502 0.1016 4.524
        实验[12] 0.0 302.3 0.950
        $ {{\rm{A}}^{2}}\Pi$ 15779.16 0.2518 330.69 0.1061 2.013 1.673 6$\text{σ}$27$\text{σ}$28$\text{σ}$09$\text{σ}$03$\text{π}$ααβ4$\text{π}$2(85.7)
        理论[26] 14730 0.252 323 0.95 0.1055
        实验[15] 14818 0.255 309[27] 0.98[27]
        实验[16] 14966.727 309.625 0.996 0.1030 4.606
        $ {{\rm{B}}^{2}}\Sigma^+$ 16612.74 0.2538 318.67 0.4874 0.1043 2.599 1.937 6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$24$\text{π}$2(78.8)
        6${\rm{\sigma }}$27$\text{σ}$28$\text{σ}$09$\text{σ}$α3$\text{π}$24$\text{π}$2(7.6)
        理论[26] 15714 0.253 319 0.99 0.1055
        实验[15] 15719 0.255 306[27] 0.98[27] 0.1030[16]
        实验[12] 15719.5 306.4 0.98
        $ {{\rm{C}}^{2}}\Pi$ 33532.99 0.3477 425.57 15.5691 0.0554 −11.932 1.546 6$\text{σ}$27$\text{σ}$28$\text{σ}$09$\text{σ}$03$\text{π}$ααβ4$\text{π}$2(59.7)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$29$\text{σ}$03$\text{π}$24$\text{π}$2(13.4)
        6$\text{σ}$27$\text{σ}$α8$\text{σ}$β9$\text{σ}$03$\text{π}$ααβ2(9.8)
        6$\text{σ}$27$\text{σ}$α8$\text{σ}$α9$\text{σ}$03$\text{π}$αββ4$\text{π}$2(2.7)
        理论[26] 26688 0.259 278 0.83 0.1095
        实验[27] 26099 270 0.72
        $ {{\rm{3}}^{2}}\Sigma^+$ 36625.55 0.3519 392.49 10.4544 0.0544 −12.567 1.140 6$\text{σ}$27$\text{σ}$α8$\text{σ}$29$\text{σ}$03$\text{π}$24$\text{π}$2(51.0)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$09$\text{σ}$α3$\text{π}$24$\text{π}$2(16.4)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$ααβ4$\text{π}$2(4.6)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$β4$\text{π}$ααβ(4.6)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$24$\text{π}$2(2.5)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$α9$\text{σ}$03$\text{π}$αββ4$\text{π}$2(1.6)
        6$\text{σ}$27$\text{σ}$28$\text{σ}$09$\text{σ}$α3$\text{π}$α4$\text{π}$αββ(1.6)
        6$\text{σ}$27$\text{σ}$α8$\text{σ}$09$\text{σ}$03$\text{π}$44$\text{π}$2(1.5)
        6$\text{σ}$27$\text{σ}$α8$\text{σ}$09$\text{σ}$03$\text{π}$24$\text{π}$4(1.5)
        理论[26] 27979 0.248 358 1.01 0.1095
        实验[15] 28822 344[27] 1.04[27] 0.1030[16]
        DownLoad: CSV

        v 0 1 2 3 4 5 6 7 8 9
        $ {{\rm{X}}^{2}}\Sigma^+$ Gv/cm−1 0 308.69 615.44 919.34 1220.80 1520.91 1820.07 2118.05 2414.53 2709.33
        Bv/cm−1 0.101389 0.100964 0.100567 0.100209 0.099815 0.099369 0.098910 0.098467 0.098043 0.097629
        108Dv/cm−1 4.351839 4.364577 4.467493 4.497514 4.362226 4.242542 4.234360 4.286016 4.334124 4.353049
        $ {{\rm{A}}^{2}}\Pi$ Gv/cm−1 15953.74 16281.83 16598.43 16930.62 17269.01 17605.65 17940.04 18272.59 18603.52 18933.04
        Bv/cm−1 0.106234 0.106462 0.106095 0.105137 0.104604 0.104235 0.103859 0.103475 0.103082 0.102679
        108Dv/cm−1 4.461909 5.111509 3.253476 3.332790 4.007870 4.130323 4.085546 4.040997 3.976138 3.938946
        $ {{\rm{B}}^{2}}\Sigma^+$ Gv/cm−1 16777.58 17097.77 17402.46 17705.63 18020.44 18339.16 18656.69 18972.44 19286.60 19599.30
        Bv/cm−1 0.104260 0.104168 0.104392 0.103697 0.102831 0.102297 0.101900 0.101515 0.101130 0.100741
        108Dv/cm−1 4.416717 5.342062 4.947374 3.120903 3.500412 4.129428 4.273733 4.244199 4.206411 4.139361
        $ {{\rm{C}}^{2}}\Pi$ Gv/cm−1 33822.25 34298.68 34607.21 34880.81 35124.57 35352.15 35566.01 35770.85 35971.25 36169.15
        Bv/cm−1 0.056049 0.057354 0.058912 0.059995 0.060974 0.062071 0.063032 0.063843 0.064515 0.065071
        108Dv/cm−1 0.293093 1.069720 1.371596 2.128287 2.433073 3.023576 3.386636 3.382563 3.426546 3.529599
        $ {{\rm{3}}^{2}}\Sigma^+$ Gv/cm−1 36879.56 37294.02 37638.56 37944.07 38221.43 38480.16 38726.99 38965.82 39199.02 39428.18
        Bv/cm−1 0.055079 0.056481 0.057758 0.059028 0.060242 0.061377 0.062432 0.063414 0.064332 0.065193
        108Dv/cm−1 0.363052 0.690909 1.002658 1.373820 1.690530 1.922724 2.122355 2.300506 2.453955 2.583320
        DownLoad: CSV

        v′′ = 0 1 2 3 4 5 6 7 8 9
        $ {{\rm{A}}^{2}}\Pi$—$ {{\rm{X}}^{2}}\Sigma^+ $
        v′ = 0 0.656888 0.266608 0.062027 0.011563 0.002170 0.000520 0.000163 0.000048 0.000007 0.000000
        1 0.272308 0.192420 0.320947 0.150685 0.466479 0.012567 0.033544 0.008655 0.000174 0.000137
        2 0.061741 0.365100 0.012591 0.236003 0.200935 0.086356 0.027568 0.007557 0.001791 0.000312
        3 0.008378 0.145153 0.330434 0.013476 0.132392 0.200767 0.112395 0.041433 0.012093 0.002903
        4 0.000641 0.027499 0.211170 0.231162 0.064589 0.062086 0.184983 0.134977 0.058263 0.018761
        5 0.000040 0.003015 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.077211
        6 0.000004 0.000182 0.008221 0.084623 0.271397 0.058393 0.151118 0.000803 0.117380 0.157174
        7 0.000000 0.000021 0.006253 0.016398 0.117920 0.263055 0.014702 0.164939 0.005113 0.077068
        8 0.000000 0.000000 0.000052 0.001674 0.027547 0.151418 0.233623 0.000068 0.157208 0.024940
        9 0.000000 0.000000 0.000007 0.000118 0.003627 0.041888 0.181283 0.190225 0.008630 0.133109
        $ {{\rm{B}}^{2}}\Sigma^+$—$ {{\rm{X}}^{2}}\Sigma^+ $
        v′ = 0 0.861288 0.125494 0.011927 0.001065 0.000142 0.000047 0.000025 0.000091 0.000000 0.000000
        1 0.129692 0.603795 0.220001 0.038332 0.006251 0.001365 0.000411 0.000120 0.000019 0.000000
        2 0.008650 0.241321 0.360072 0.284163 0.081308 0.018646 0.004456 0.001109 0.000226 0.000018
        3 0.000365 0.027661 0.352567 0.179385 0.288215 0.112584 0.030079 0.007227 0.001600 0.000265
        4 0.000002 0.001707 0.051462 0.411903 0.083378 0.268533 0.131641 0.039281 0.009668 0.002055
        5 0.000001 0.000017 0.003843 0.078423 0.421433 0.034730 0.246976 0.148790 0.049663 0.012870
        6 0.000000 0.000000 0.000117 0.006341 0.108918 0.407382 0.009402 0.221296 0.163711 0.061334
        7 8 0.000000 0.000000 0.000003 0.000002 0.000001 0.000007 0.000333 0.000002 0.009581 0.000763 0.141252 0.014168 0.381199 0.173321 0.000074 0.346687 0.190975 0.003801 0.174597 0.158106
        9 0.000000 0.000000 0.000000 0.000000 0.000000 0.001272 0.020484 0.203605 0.306437 0.017104
        $ {{\rm{C}}^{2}}\Pi$—$ {{\rm{X}}^{2}}\Sigma^+ $
        v′ = 0 0.000002 0.000057 0.000400 0.002491 0.013257 0.048381 0.121107 0.211164 0.245963 0.199742
        1 0.000028 0.000755 0.003923 0.016478 0.054711 0.112499 0.129055 0.063035 0.000478 0.054393
        2 0.000216 0.004536 0.018057 0.052861 0.110648 0.119527 0.040456 0.002385 0.059184 0.058927
        3 0.000894 0.014294 0.042688 0.083192 0.097065 0.033697 0.003920 0.060262 0.039865 0.000817
        $ {{\rm{3}}^{2}}\Sigma^+$—$ {{\rm{X}}^{2}}\Sigma^+ $
        v′ = 0 0.000005 0.000160 0.001014 0.005583 0.025973 0.082035 0.174625 0.263266 0.237744 0.147940
        1 0.000072 0.001726 0.007985 0.028959 0.080861 0.133268 0.106890 0.018946 0.019348 0.137924
        2 0.000444 0.008122 0.028147 0.068699 0.114064 0.085695 0.008341 0.025544 0.075168 0.024261
        3 0.001887 0.025614 0.064048 0.096749 0.076464 0.007949 0.023664 0.062244 0.010184 0.021472
        4 0.005823 0.057375 0.098715 0.079207 0.013459 0.015420 0.056215 0.010480 0.018687 0.044825
        5 0.013104 0.091074 0.099009 0.027450 0.005603 0.051927 0.016773 0.012448 0.040966 0.001448
        6 0.023467 0.109148 0.062336 0.000039 0.043234 0.033313 0.003366 0.042212 0.004752 0.023015
        7 0.036552 0.106016 0.020316 0.019085 0.055807 0.001734 0.035028 0.017051 0.012699 0.031310
        8 0.052050 0.085867 0.000431 0.051861 0.028088 0.011562 0.037256 0.000833 0.036176 0.001957
        9 0.069548 0.057189 0.008529 0.060907 0.001791 0.038489 0.008713 0.024666 0.015229 0.013407
        DownLoad: CSV

        Transition Radiative lifetimes/ns
        v′ = 0 v′ = 1 v′ = 2
        $ {{\rm{A}}^{2}}\Pi $—$ {{\rm{X}}^{2}}\Sigma^+ $ 31.23 31.35 31.56
        $ {{\rm{B}}^{2}}\Pi $—$ {{\rm{X}}^{2}}\Sigma^+ $ 38.83 38.89 39.12
        $ {{\rm{C}}^{2}}\Pi$—$ {{\rm{X}}^{2}}\Sigma^+ $ 25.92 26.01 26.18
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] Wu Dong-Lan, Guo Zi-Yi, Zhou Jun-Jie, Ruan Wen, Zeng Xue-Feng, Xie An-Dong.Spectral characteristics of low excited state of strontium monobromide molecule. Acta Physica Sinica, 2022, 71(22): 223101.doi:10.7498/aps.71.20221052
        [2] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen.Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301.doi:10.7498/aps.69.20191723
        [3] Zhang Ji-Cai, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue.Spectroscopic properties and analytical potential energy function of ground and low-lying excited states of BeC moleule. Acta Physica Sinica, 2019, 68(5): 053102.doi:10.7498/aps.68.20181695
        [4] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao.Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102.doi:10.7498/aps.63.083102
        [5] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe.MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [6] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi.Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [7] Chen Heng-Jie.Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301.doi:10.7498/aps.62.083301
        [8] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng.Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [9] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng.Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [10] Fan Qun-Chao, Sun Wei-Guo, Li Hui-Dong, Feng Hao.The full vibrational spectra and dissociation energies of Li2 molecule. Acta Physica Sinica, 2010, 59(7): 4577-4583.doi:10.7498/aps.59.4577
        [11] Wang Quan-Wu, Chen Heng-Jie, Cheng Xin-Lu, Su Xin-Fang, Tang Hai-Yan.Multi-reference configuration interaction of the ground and low-lying excited states of LiC. Acta Physica Sinica, 2010, 59(7): 4556-4563.doi:10.7498/aps.59.4556
        [12] Fan Qun-Chao, Feng Hao, Sun Wei-Guo.Studies on the full vibrational spectra and dissociation energies of some diatomic ions. Acta Physica Sinica, 2010, 59(1): 203-209.doi:10.7498/aps.59.203
        [13] Liu Yan, Ren Wei-Yi, Wang A-Shu, Liu Song-Hong.Studies on the high-lying vibrational energies and molecular dissociation energies for some electronic states of K2 molecule. Acta Physica Sinica, 2008, 57(3): 1599-1607.doi:10.7498/aps.57.1599
        [14] Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe, Ma Heng, Yang Xiang-Dong.Investigation on vibrational levels, inertial rotation and centrifugal distortion constants of 7Li2(X1Σ+g). Acta Physica Sinica, 2008, 57(1): 165-171.doi:10.7498/aps.57.165
        [15] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan.MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552.doi:10.7498/aps.56.2547
        [16] Shi De-Heng, Sun Jin-Feng, Liu Yu-Fang, Ma Heng, Zhu Zun-Lue, Yang Xiang-Dong.Investigation of analytic potential energy function, vibrational levels and inertial rotation constants for the 23Πu state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(8): 4454-4460.doi:10.7498/aps.56.4454
        [17] Shi De-Heng, Sun Jin-Feng, Ma Heng, Zhu Zun-Lue.Investigation of analytic potential energy function, harmonic frequency and vibrational levels for the 23Σ+g state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(4): 2085-2091.doi:10.7498/aps.56.2085
        [18] Hu Shi-De, Sun Wei-Guo, Ren Wei-Yi, Feng Hao.Studies on the full vibrational energies and dissociation energies for some states of alkali hydride molecules. Acta Physica Sinica, 2006, 55(5): 2185-2193.doi:10.7498/aps.55.2185
        [19] Ren Wei-Yi, Sun Wei-Guo.Studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of Na2 molecule. Acta Physica Sinica, 2005, 54(2): 594-605.doi:10.7498/aps.54.594
        [20] XIANG TIAN-XIANG, SUN SHENG, GONG SHUN-SHENG, WANG JIA-MIN.TIME RESOLVED STUDIES OF STATE TO STATE VIBRATIONAL ENERGY TRANSFER (Ⅰ)——SELF-COLLISION PROCESSES OF IDIONE MOLECULES. Acta Physica Sinica, 1990, 39(10): 1547-1554.doi:10.7498/aps.39.1547
      Metrics
      • Abstract views:6576
      • PDF Downloads:52
      • Cited By:0
      Publishing process
      • Received Date:26 September 2018
      • Accepted Date:11 December 2018
      • Available Online:01 February 2019
      • Published Online:05 February 2019

        返回文章
        返回
          Baidu
          map