\begin{document}$\gamma /\gamma′ $\end{document} microstructure similar to Ni-base superalloys and also including various alloying elements such as Al and W, new Co-base superalloy, namely Co-Al-W-base alloy, has been widely studied as a kind of potential alternative of Ni-base superalloy, which is the most important high-temperature structural material in industrial applications. Besides, Co-Al-W-base alloy has also excellent mechanical properties, for example, creep properties comparable to those of the first-generation Ni-base single crystal superalloys. In our previous work, the ideal composition formula of Ni-base superalloy has been obtained by applying the cluster-plus-glue-atom structure model of faced centered cubic solid solution, which shows that the most stable chemical short-range-order unit is composed of a nearest-neighbor cluster and three next-neighbor glue atoms. In this paper, the ideal cluster formula of Co-Al-W-base superalloy is addressed by using the same approach. Based on cluster-plus-glue-atom model theory, according to lattice constants and atom radii, calculations are carried out. The results show that the atom radius of Al is equal to Covalent radius (0.126 nm) and for \begin{document}$\gamma′ $\end{document} phase the atom radius of W changes obviously (0.1316 nm). After analyzing atomic radii, the chemical formula for Co-Al-W ternary alloy is calculated to be [Al-Co12](Co,Al,W)3, which signifies an Al centered atom and twelve Co nearest-neighbored cluster atoms plus three glue atoms, which is in good consistence with that for Ni-base single crystal superalloy. For multi-element alloy, the alloying elements are classified, according to the heat of mixing between the alloying elements and Co as well as partition behavior of alloying elements, as solvent elements-Co-like elements \begin{document}$\overline {{\rm{Co}}} $\end{document} (Co, Ni, Ir, Ru, Cr, Fe, and Re) and solute elements-Al-like elements \begin{document}$\overline {{\rm{Al}}} $\end{document} (Al, W, Mo, Ta, Ti, Nb, V, etc.). The solvent elements can be divided into two kinds according to partition behaves: \begin{document}${\overline {{\rm{Co}}} ^{\gamma }}$\end{document} (Cr, Fe, and Re) and \begin{document}${\overline {{\rm{Co}}} ^{\gamma′}}$\end{document} (Ni, Ir, and Ru). The latter is further grouped into Al, \begin{document}${\overline {\rm{W}} }$\end{document} (W and Mo, which have weaker heat of mixing than Al-Co ) and \begin{document}${\overline {{\rm{Ta}}} }$\end{document} (Ta, Ti, Nb, V, etc., which have stronger heat of mixing than Al-Co). Then all chemically complex Co-Al-W-base superalloys are simplified into \begin{document}$\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $\end{document} pseudo-binary or \begin{document}$\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-} \left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)$\end{document} pseudo-ternary system. Within the framework of the cluster-plus-glue-atom formulism and by analyzing the compositions of alloy, it is shown that the Co-Al-W-base superalloy satisfies the ideal formula \begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$\end{document} (or \begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$\end{document} = \begin{document}${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$\end{document} at.%). In the same way, those of \begin{document}$\gamma $\end{document} and \begin{document}$\gamma′ $\end{document} phases are respectively \begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$\end{document} (or \begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$\end{document} = \begin{document}${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$\end{document} at.%) and \begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$\end{document} (or \begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$\end{document} = \begin{document}${\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$\end{document} at.%). For example, alloy Co82Al9W9 and its \begin{document}$\gamma $\end{document} and \begin{document}$\gamma′ $\end{document} phases are formulated respectively as [Al-Co12]Co1.1Al0.4W1.4 (~ [Al-Co12]Co1.0Al0.5W1.5), [Al-Co12]Co1.6Al0.4W1.0 (~ [Al-Co12]Co1.5Al0.5W1.0), and [Al-Co12]Co0.3Al0.5W2.2 (~[Al-Co12]Co0.5Al0.5W2.0)."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Ma Qi-Hui, Zhang Yu, Wang Qing, Dong Hong-Gang, Dong Chuang
    PDF
    HTML
    Get Citation
    • Having a $\gamma /\gamma′ $ microstructure similar to Ni-base superalloys and also including various alloying elements such as Al and W, new Co-base superalloy, namely Co-Al-W-base alloy, has been widely studied as a kind of potential alternative of Ni-base superalloy, which is the most important high-temperature structural material in industrial applications. Besides, Co-Al-W-base alloy has also excellent mechanical properties, for example, creep properties comparable to those of the first-generation Ni-base single crystal superalloys. In our previous work, the ideal composition formula of Ni-base superalloy has been obtained by applying the cluster-plus-glue-atom structure model of faced centered cubic solid solution, which shows that the most stable chemical short-range-order unit is composed of a nearest-neighbor cluster and three next-neighbor glue atoms. In this paper, the ideal cluster formula of Co-Al-W-base superalloy is addressed by using the same approach. Based on cluster-plus-glue-atom model theory, according to lattice constants and atom radii, calculations are carried out. The results show that the atom radius of Al is equal to Covalent radius (0.126 nm) and for $\gamma′ $ phase the atom radius of W changes obviously (0.1316 nm). After analyzing atomic radii, the chemical formula for Co-Al-W ternary alloy is calculated to be [Al-Co 12](Co,Al,W) 3, which signifies an Al centered atom and twelve Co nearest-neighbored cluster atoms plus three glue atoms, which is in good consistence with that for Ni-base single crystal superalloy. For multi-element alloy, the alloying elements are classified, according to the heat of mixing between the alloying elements and Co as well as partition behavior of alloying elements, as solvent elements-Co-like elements $\overline {{\rm{Co}}} $ (Co, Ni, Ir, Ru, Cr, Fe, and Re) and solute elements-Al-like elements $\overline {{\rm{Al}}} $ (Al, W, Mo, Ta, Ti, Nb, V, etc.). The solvent elements can be divided into two kinds according to partition behaves: ${\overline {{\rm{Co}}} ^{\gamma }}$ (Cr, Fe, and Re) and ${\overline {{\rm{Co}}} ^{\gamma′}}$ (Ni, Ir, and Ru). The latter is further grouped into Al, ${\overline {\rm{W}} }$ (W and Mo, which have weaker heat of mixing than Al-Co ) and ${\overline {{\rm{Ta}}} }$ (Ta, Ti, Nb, V, etc., which have stronger heat of mixing than Al-Co). Then all chemically complex Co-Al-W-base superalloys are simplified into $\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $ pseudo-binary or $\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-} \left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)$ pseudo-ternary system. Within the framework of the cluster-plus-glue-atom formulism and by analyzing the compositions of alloy, it is shown that the Co-Al-W-base superalloy satisfies the ideal formula $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$ = ${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$ at.%). In the same way, those of $\gamma $ and $\gamma′ $ phases are respectively $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$ = ${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$ at.%) and $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$ = ${\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$ at.%). For example, alloy Co 82Al 9W 9and its $\gamma $ and $\gamma′ $ phases are formulated respectively as [Al-Co 12]Co 1.1Al 0.4W 1.4(~ [Al-Co 12]Co 1.0Al 0.5W 1.5), [Al-Co 12]Co 1.6Al 0.4W 1.0(~ [Al-Co 12]Co 1.5Al 0.5W 1.0), and [Al-Co 12]Co 0.3Al 0.5W 2.2(~[Al-Co 12]Co 0.5Al 0.5W 2.0).
          Corresponding author:Dong Chuang,dong@dlut.edu.cn
        • Funds:Project supported by the Aviation Major Research Program Cultivation Project of the National Natural Science Foundation of China (Grant No. 91860108) and the National Natural Science Foundation of China (Grant No. 11674045).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

      • 合金成分/at.% $\gamma $相成分/at.% 晶格常数实验值/nm 晶格常数计算值/nm 绝对误差$\varDelta $
        Co82Al9W9 Co81.7Al9.3W9 0.3580 0.3579 0.0001
        Co83Al9W8 Co81.9Al10.0W8.1 0.3576 0.3575 0.0001
        Co80Al9W11 Co80.7Al9.2W10.2 0.3586 0.3588 0.0002
        Co74Al9W9Cr8 Co73.9Al8.0W6.8Cr11.2 0.3578 0.3575 0.0003
        Co64Al9W9Ni18 Co69.1Al6.8W7.0Ni16.9 0.3577 0.3562 0.0015
        Co65Al9W9Ni9Cr8 Co66.7Al7.8W6.7Ni8.3Cr10.7 0.3581 0.3584 0.0003
        Co56Al9W9Ni18Cr8 Co59.2Al6.0W7.4Ni15.6Cr11.8 0.3583 0.3581 0.0002
        Co72.5Ni10Al10W7.5 Co76.2Al8.7W5.4Ni9.7 0.3578 0.3562 0.0016
        DownLoad: CSV

        合金成分/at.% $\gamma′ $相成分/at.% 晶格常数实验值/nm W原子半径/nm
        Co82Al9W9 Co77.49Al10.03W12.48 0.3594 0.1317
        Co83Al9W8 Co76.6Al9.4W14 0.3589 0.1306
        Co80Al9W11 Co75.1Al9.1W15.8 0.3595 0.1311
        Co74Al9W9Cr8 Co73.9Al9.4W10.4Cr6.3 0.3587 0.1314
        Co64Al9W9Ni18 Co58.9Al10.8W11.0Ni19.3 0.3590 0.1317
        Co65Al9W9Ni9Cr8 Co64.2Al10.1W9.9Ni9.4Cr6.4 0.3587 0.1317
        Co56Al9W9Ni18Cr8 Co54.5Al10.5W9.7Ni19.7Cr5.6 0.3587 0.1319
        Co72.5Ni10Al10W7.5 Co68.8Al10.8W9.9Ni10.5 0.3593 0.1324
        DownLoad: CSV

        元素
        分类
        合金化
        元素
        混合焓
        $\Delta H$/kJ·mol
        元素配分
        系数K
        ${\overline {{\rm{Co}}} ^{\gamma }}$ Cr –4 0.48—0.60
        Fe –1
        Re 2
        ${\overline {{\rm{Co}}} ^{\gamma′ }}$ Ni –2 1.08—1.27
        Ru –1
        Ir –3
        Al Al –19 0.93—1.60
        ${\overline {\rm{W}} }$ W –1 1.03—6.21
        Mo –5
        ${\overline {{\rm{Ta}}} }$ V –14 1.57—8.67
        Ta –24
        Nb –25
        Ti –28
        Sc –30
        Hf –35
        DownLoad: CSV

        合金成分/at.% 团簇成分式-[团簇](连接原子)3 连接原子
        Co78Al10W10Ta2 [Al-Co12]Co0.5Al0.6W1.6Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.5}{\rm{A}}{{\rm{l}}_{0.6}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co78Al9W10Mo3 [Al-Co12]Co0.5Al0.4W1.6Mo0.5 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.5}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{2.1}}$
        Co79Al9W10Ti2 [Al-Co12]Co0.6Al0.4W1.6Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W10V2 [Al-Co12]Co0.6Al0.4W1.6V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W10Si2 [Al-Co12]Co0.6Al0.4W1.6Si0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W8Ta2Nb2 [Al-Co12]Co0.6Al0.4W1.3Ta0.3Nb0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79Al9W8Ta2V2 [Al-Co12]Co0.6Al0.4W1.3Ta0.3V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79Al8W9Ta2Ti2 [Al-Co12]Co0.6Al0.3W1.4Ta0.3Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.3}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79.5Al9.7W10.8 [Al-Co12]Co0.7Al0.6W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.7}{\rm{A}}{{\rm{l}}_{0.6}}{\overline {\rm{W}} _{1.7}}$
        Co79.9Al9.4W10.7 [Al-Co12]Co0.8Al0.5W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.7}}$
        Co80Al9W11 [Al-Co12]Co0.8Al0.4W1.8 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.8}}$
        Co80Al9W9Ti2 [Al-Co12]Co0.8Al0.4W1.4Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80Al9W9V2B0.04 [Al-Co12]Co0.8Al0.4W1.4V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80Al9W9Ta2 [Al-Co12]Co0.8Al0.4W1.4Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80.3Al9.3W10.4 [Al-Co12]Co0.8Al0.5W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.7}}$
        Co80.5Al9W10Si0.5 [Al-Co12]Co0.9Al0.4W1.6Si0.1 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.9}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.1}}$
        Co81Al9W9Mo1B0.04 [Al-Co12]Co1.0Al0.4W1.4Mo0.2 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}$
        Co81Al9W8Ta2 [Al-Co12]Co1.0Al0.4W1.3Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co81.3Al9.2W9.5 [Al-Co12]Co1.0Al0.5W1.5 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.5}}$
        Co81.5Al9W9Nb0.5 [Al-Co12]Co1.0Al0.4W1.4Nb0.1 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.1}}$
        Co81.5Al9W5.5Ta2Mo2 [Al-Co12]Co1.0Al0.4W0.9Ta0.3Mo0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.2}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co82Al9W9 [Al-Co12]Co1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co72Al9W9Ni10 [Al-Co11.7Ni0.3]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co82Al9W7.5Mo1.5 [Al-Co12]Co1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co80Al9W9Cr2B0.04 [Al-Co12]Co0.8Cr0.3Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\overline {{\rm{Co}}} ^\gamma }_{0.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}$
        Co78Al9W9Cr4 [Al-Co12]Co0.6Cr0.6Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\overline {{\rm{Co}}} ^\gamma }_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co73Al9W9Ni9 [Al-Co11.7Ni0.3]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co64Al9W9Ni18 [Al-Co10.2Ni1.8]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co81.8Al9.2W9 [Al-Co12]Co1.1Al0.5W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.4}}$
        Co72.5Al10W7.5Ni10 [Al-Co11.6Ni0.4]Ni1.2Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.2}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co81.5Al9W5.5Ta2Ir2 [Al-Co2]Co1.0Al0.4W0.9Ta0.3Ir0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{0.9}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W8Ta2Cr2 [Al-Co12]Co0.6Cr0.3Al0.4W1.3Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\overline {{\rm{Co}}} ^\gamma }_{0.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.3}}$
        DownLoad: CSV

        合金成分/at.% $\gamma $相团簇成分式 $\gamma′ $相团簇成分式
        Co82Al9W9 [Al-Co12]Co1.6Al0.4W1.0 [Al-Co12]Co0.3Al0.5W2.2
        Co78Al9W9Cr4 [Al-Co12]Co0.9Al0.3W0.9Cr0.9 [Al-Co12]Co0.2Al0.5W1.8Cr0.5
        Co73Al9W9Ni18 [Al-Co11.1Ni0.9]Al0.1W1.1Ni1.8 [Al-Co9.4Ni2.6]Al0.7W1.8Ni0.5
        Co79.5Al9.7W10.8 [Al-Co12]Co1.7Al0.4W0..9 [Al-Co12]Co0.4Al0.6W2.0
        Co80Al9W9Ti2 [Al-Co12]Co1.6Al0.4W0.8Ti0.2 [Al-Co12]Co0.2Al0.4W1.9Ti0.4
        Co80Al9W9Ta2 [Al-Co12]Co1.8Al0.4W0.7Ta0.1 [Al-Co12]Co0.2Al0.4W1.9Ta0.5
        Co79Al8W9Ta2Ti2 [Al-Co12]Co2.0Al0.3W0.5Ta0.04Ti0.1 [Al-Co12]Co0.1Al0.4W1.9Ta0.3Ti0.3
        Co78Al10W10Ta2 [Al-Co12]Co1.6Al0.7W0.7Ta0.1 [Al-Co12]Al0.7W1.9Ta0.4
        Co78Al9W10Mo3 [Al-Co12]Co1.7Al0.1W0.8Mo0.4 [Al-Co12]Co0.2Al0.6W1.7Mo0.5
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

      • [1] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang.First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101.doi:10.7498/aps.71.20221036
        [2] Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming.Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate. Acta Physica Sinica, 2020, 69(13): 136601.doi:10.7498/aps.69.20200120
        [3] Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong.Molecule-like structural units in silicate-glass-forming oxides. Acta Physica Sinica, 2020, 69(13): 136101.doi:10.7498/aps.69.20191892
        [4] Wang Hao-Yu, Nong Zhi-Sheng, Wang Ji-Jie, Zhu Jing-Chuan.Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys. Acta Physica Sinica, 2019, 68(3): 036101.doi:10.7498/aps.68.20181893
        [5] Jiang Bei-Bei, Wang Qing, Dong Chuang.A cluster-formula composition design approach based on the local short-range order in solid solution structure. Acta Physica Sinica, 2017, 66(2): 026102.doi:10.7498/aps.66.026102
        [6] Qian Sheng-Nan, Dong Chuang.Composition formulas for Mg-Al industrial alloy specifications. Acta Physica Sinica, 2017, 66(13): 136103.doi:10.7498/aps.66.136103
        [7] Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang.Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model. Acta Physica Sinica, 2017, 66(9): 092101.doi:10.7498/aps.66.092101
        [8] Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang.Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys. Acta Physica Sinica, 2016, 65(3): 036101.doi:10.7498/aps.65.036101
        [9] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang.High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102.doi:10.7498/aps.63.028102
        [10] Chen Ji-Xiang, Qiang Jian-Bing, Wang Qing, Dong Chuang.Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Physica Sinica, 2012, 61(4): 046102.doi:10.7498/aps.61.046102
        [11] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang.Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402.doi:10.7498/aps.61.036402
        [12] Shao Chen-Wei, Wang Zhen-Hua, Li Yan-Nan, Zhao Qian, Zhang Lin.Computational study on thermal stability of an AuCu249 alloy cluster on the atomic scale. Acta Physica Sinica, 2011, 60(8): 083602.doi:10.7498/aps.60.083602
        [13] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang.Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101.doi:10.7498/aps.60.116101
        [14] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi.A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548.doi:10.7498/aps.56.1543
        [15] Wang Qing, Qiang Jian-Bing, Wang Ying-Min, Xia Jun-Hai, Lin Zhe, Zhang Xin-Fang, Dong Chuang.Formation and composition optimization of Cu-based bulk metallic glasses in Cu-Zr-Ti ternary system. Acta Physica Sinica, 2006, 55(1): 378-385.doi:10.7498/aps.55.378
        [16] SHEN BAO-GEN, WO FENG, YANG LIN-YUAN, ZHAO JIAN-GAO, GUO HUI-QUN, ZHAN WEN-SHAN, CHEN JIN-CHANG.EFFECT OF COMPOSITION AND TRANSITION METALS ON CRYSTALLIZATION TEMPERATURE OF Fe-Zr-BASED AMORPHOUS ALLOYS. Acta Physica Sinica, 1990, 39(9): 1488-1493.doi:10.7498/aps.39.1488
        [17] WANG JING-HAN, LI DE-XIU, CHEN JIN-CHANG.COMPUTER SIMULATION OF THE STRUCTURE OF AMORPHOUS ALLOY Ni64B36 (I)——THE CHEMICAL SHORT RANGE ORDER IN THE ALLOY. Acta Physica Sinica, 1986, 35(4): 482-488.doi:10.7498/aps.35.482
        [18] FU ZHUO-WU.THEORY OF N-COMPONENT DISORDER MATERIALS WITH SHORT-RANGE ORDER. Acta Physica Sinica, 1985, 34(4): 493-502.doi:10.7498/aps.34.493
        [19] ZHAO YOU-XIANG, LIU ZHI-YI, WANG SHOU-ZHENG, GUO SHU-QUAN.EFFECTS OF HIGH PRESSURE-HIGH TEMPERATURE TREATMENT ON THE STRUCTURE COMPOSITION AND SUPERCONDUCTIVITY OF Nb3(Al, Ge). Acta Physica Sinica, 1983, 32(1): 108-117.doi:10.7498/aps.32.108
        [20] KAO SHU-JUN, TSIEN CHIH-TSIANG.THE QUASI-CHEMICAL MODEL OF SELF-DIFFUSION IN HOMOGENEOUS ALLOYS. Acta Physica Sinica, 1965, 21(3): 622-629.doi:10.7498/aps.21.622
      Metrics
      • Abstract views:8203
      • PDF Downloads:64
      • Cited By:0
      Publishing process
      • Received Date:28 May 2018
      • Accepted Date:15 January 2019
      • Available Online:12 March 2019
      • Published Online:20 March 2019

        返回文章
        返回
          Baidu
          map