专题: 无序合金的序调控

封面文章
2025, 74 (8): 086101.
doi: 10.7498/aps.74.20250097
摘要 +
多主元合金概念的提出颠覆了传统物理冶金的理念, 极大地拓展了材料设计空间. 合金相图从热力学角度揭示成分、热力学与结构之间的关系, 对指导材料优化具有重要意义. 传统实验方法测定相图费时耗力, 且面临着测量条件、成分控制、高温高压等因素限制, 系统评估相图和热力学性质困难. 在此工作中, 我们以典型等原子比镍钴铬合金为原型材料, 采用元动力学、动态概率增强采样和扩展系综模拟相结合的方法, 克服原子尺度模拟的时间尺度限制, 系统地绘制了镍钴铬在高温、高压条件下的温度-压力相图, 并计算了不同热力学条件下该材料体心立方晶体与液体相变的自由能面. 基于自由能路径, 量化了晶化和熔化相变过程中, 激活能、激活体积、激活熵与温度、压力的关系, 从而揭示了压力和温度分别通过影响激活体积和激活熵, 进而影响熔化和晶化动力学的物理机制. 该研究为理解多主元合金的热力学与相变动力学提供了理论支持, 探索了其在极端条件下结构稳定性.

编辑推荐
2025, 74 (8): 086102.
doi: 10.7498/aps.74.20250128
摘要 +
多主元合金, 亦称为高熵合金, 作为一种新型合金材料, 因其优异的力学性能和热稳定性在多个领域展现出巨大的应用潜力. 本文采用分子动力学模拟方法, 以3种典型的体心立方结构多主元合金——TaWNbMo, TiZrNb和CoFeNiTi为研究对象, 系统研究了合金中的原子局域晶格畸变特征及其影响因素. 通过冯·米塞斯应变和体积应变作为描述符, 定量分析了合金中原子应变的分布及其与晶格畸变的关系. 研究结果表明, 晶格畸变越大, 冯·米塞斯应变和体积应变的分布范围越广, 且应变值显著增大. 进一步分析发现, 合金中的原子半径差异、化学短程有序结构以及温度均显著影响原子应变. 具体而言, 原子半径差异越大, 体积应变越大, 而化学短程有序结构的形成有助于减小晶格畸变和原子应变. 温度的升高则会导致晶格振动加剧, 从而增大原子应变. 本文的研究为理解高熵合金的微观力学行为提供了新的视角, 并为其在高温和极端环境下的应用设计提供了理论支持.

编辑推荐
2025, 74 (8): 086103.
doi: 10.7498/aps.74.20250141
摘要 +
中熵合金因其独特的强塑性协同效应, 在高应变速率服役的结构材料领域展现出广阔应用前景. 本研究聚焦于NiCoV中熵合金体系, 通过引入高熔点钨元素(原子含量为5%)进行合金化设计, 采用真空电弧熔炼结合热机械处理工艺制备了(NiCoV)95W5合金. 基于分离式霍普金森压杆实验平台, 系统揭示了该合金在2000—6000 s–1高应变速率下的动态响应机制与变形机理. 研究发现: 合金展现出优异的应变速率敏感性(m = 0.42), 当应变速率从准静态(10–3 s–1)提升至动态(6000 s–1)时, 屈服强度显著提升162% (720→1887 MPa), 这一强化效应源于高应变速率下晶格畸变诱导的声子拖曳作用显著增强. 通过显微分析, 揭示了该合金体系在高应变速率下的多尺度协同变形机理: 2000 s–1时以位错平面滑移为主导, 当速率增至4000 s–1时形成高密度位错缠结网络并激发部分析出相协同变形, 而在6000 s–1条件下则通过诱发变形孪晶实现加工硬化的存续. 本研究阐明了W元素掺杂的NiCoV中熵合金动态力学行为与变形机制, 为设计具有优异动态力学响应的新型结构材料提供了参考.
专题: 关联电子材料与散射谱学

编辑推荐
2025, 74 (8): 087402.
doi: 10.7498/aps.74.20241402
摘要 +
非常规超导电性通常与一系列复杂的物质态相互竞争或共存. 在铜氧化物超导材料中, 存在自旋序、电荷序、赝能隙态和奇异金属相等多种物质态. 理解它们之间的关系是解决高温超导机理问题的基础. 最近的研究结果表明, 电荷序关联在铜氧化物体系中普遍存在, 并且覆盖了相图的广泛区域, 成为高温超导研究的重点. 本文总结了共振X 射线散射对铜氧化物中电荷序的研究进展, 聚焦于具有能量分辨的非弹性散射实验, 着重介绍了关于高温动态电荷序关联的研究, 以及结合单轴应力对电荷序进行调控的工作. 基于这些结果, 讨论了铜氧化物电荷序的微观机制、结构和对称性, 以及电荷序对超导和正常态的可能影响, 并对未来的研究方向进行了展望.
专题: 少电子原子分子精密谱

编辑推荐
2025, 74 (8): 083101.
doi: 10.7498/aps.74.20241728
摘要 +
少电子原子的精密光谱在基本物理理论验证、精细结构常数精确测定以及原子核性质深入探索等领域具有重要的应用价值. 随着精密测量物理学的快速发展, 人们对原子结构数据的需求已从最初的存在性确认, 转变为对高度准确性和精确性的持续追求. 为了满足精密光谱实验对高精度结构性质数据的迫切需求, 我们自主发展了一系列基于B-样条基组的高精度理论方法, 并将其成功应用于少电子原子的能级结构与外场响应性质的理论研究中. 具体而言, 实现了氦原子和类氦离子能谱的高精度确定, 为相关实验研究提供理论支撑; 实现了幻零波长的高精度理论预言, 为量子电动力学理论检验开辟了新方向; 提出了有效抑制光频移的理论方案, 为氦原子高精度光谱实验的开展提供了重要支持. 展望未来, 基于B-样条基组的高精度理论方法有望在量子态操控、核结构性质精确测定、超冷分子形成以及新物理探索等前沿领域得到广泛应用, 从而推动国内外精密测量物理领域的蓬勃发展.
综述

编辑推荐
2025, 74 (8): 087401.
doi: 10.7498/aps.74.20241778
摘要 +
作为近年来新发现的非常规超导体, 重费米子化合物二碲化铀(UTe2)因被认为存在自旋三重态超导配对、高场再入超导相和新奇量子临界特征而受到广泛关注. 然而, 不同的样品质量导致该体系的实验研究结果呈现出明显的差异甚至矛盾. 关于是否多组分超导序参量、是否时间反演对称性破缺和多个场致超导相是否相同起源等关键问题, 学界争议激烈, 严重阻碍了对该体系本征超导配对机制的深度认识和理解. 本文总结了UTe2的单晶生长方法研究进展, 包括化学气相输运法、熔盐助熔剂法、碲助熔剂法和熔盐助熔剂液体输运法, 并梳理了生长条件对样品超导性和结晶质量的影响, 最后进行了总结和展望.
总论

2025, 74 (8): 080301.
doi: 10.7498/aps.74.20241223
摘要 +
量子近似优化算法(QAOA)作为含噪的中等规模量子(NISQ)计算时代的重要算法, 在最大割问题上展现了极大的优势和潜力. 然而由于缺乏量子纠错的支持, 在NISQ体系中计算的可靠性会随着算法的线路深度增加而急剧下降. 这样, 如何针对最大割问题设计高效的浅层低复杂度QAOA, 是当前NISQ时代展现量子计算优势所面临的一个重要挑战. 本文在标准QAOA算法解决最大割问题的目标哈密顿量线路中引入泡利Y旋转门, 通过提高量子试探函数在单次迭代中的操控灵活性和希尔伯特空间的检索效率, 显著提升了QAOA在最大割问题上的性能表现. 基于MindSpore Quantum平台的模拟实验表明, 与标准QAOA及当前其主流变体MA-QAOA和QAOA+等相比, 本文提出的QAOA新变体——RY层辅助QAOA在可降低线路深度、减少CNOT双比特量子逻辑门数量的同时, 依然可达到更优的逼近率, 具备更高可靠性的潜力.

2025, 74 (8): 080401.
doi: 10.7498/aps.74.20241376
摘要 +
星载超高精度惯性传感器是空间引力波探测任务的核心载荷之一. 运行环境差异、卫星工质消耗和电子器件老化会导致惯性传感器主要在轨工作参数与地面定标结果不一致, 影响数据产品精度, 进而影响科学数据质量, 需开展惯性传感器工作参数在轨标定工作. 本文针对空间引力波探测太极计划残余加速度噪声优于3×10–15 m/(s2·Hz1/2)@3 mHz的超高精度指标要求, 结合太极计划惯性传感器设计布局以及实际噪声模型, 设计了惯性传感器标度因数和质心偏差矢量参数在轨定标方案, 并通过仿真实验验证了方案的可行性. 仿真结果表明, 标度因数的在轨定标相对误差小于0.03%, 质心偏差在轨定标单轴误差$ < 75\;{\text{μm} }$, 满足太极计划惯性传感器工作参数在轨定标精度要求.

2025, 74 (8): 080701.
doi: 10.7498/aps.74.20250028
摘要 +
金刚石是一种用途极为广泛的极限功能材料, 本研究在6.5 GPa压力条件下, 利用温度梯度法研究了合成腔体中添加三硫化二硼(B2S3)时金刚石大单晶的合成. 随着B2S3的添加, 所合成金刚石的颜色由典型的黄色变为了浅蓝色, 而且金刚石的生长速率也随之降低. 拉曼(Raman)测试表明所制备样品为单一的sp3杂化金刚石相, 但对应的Raman特征峰均趋于向低波数移动. 借助傅里叶显微红外光谱(FTIR)测试结果, 分析发现金刚石内部氮杂质浓度逐渐降低. 此外, 利用霍尔效应测试表征了所合成金刚石的电输运性能, 结果表明B2S3可将(111)晶向金刚石电阻率降低至45.4 Ω·cm. 然而, 当合成体系中同时添加0.002 g B2S3和除氮剂时, 对应金刚石晶体的电阻率锐减至0.43 Ω·cm, 该研究为金刚石在半导体领域中的应用提供了重要的实验依据.
基本粒子物理学与场

2025, 74 (8): 081101.
doi: 10.7498/aps.74.20241751
摘要 +
量子力学中量子态演化的幺正性同广义相对论中的绝对性概念之间的冲突, 是量子引力理论必须面对的关键难题. 本文首先回顾了芝诺悖论的主要内容, 以及牛顿力学中“极限”和“速度”概念在解决这一悖论中所起的关键作用. 以此为类比, 研究了量子纠缠冯·诺伊曼熵作为Rényi熵的极限, 在黑洞蒸发过程中可被视为状态量, 而模哈密顿量可被视为守恒量. 由此出发, 详细探讨了黑洞蒸发过程中引力路径积分中的霍金鞍点和副本虫洞鞍点对副本参数n的依赖. 进一步指出副本技巧与量子不可克隆定理之间的关系, 指出需要引入一个新的物理量——n依赖的相对熵来描述黑洞蒸发过程中状态的变化. 在黑洞蒸发过程中, 系统从霍金鞍点过渡到虫洞鞍点时,其副本参数n依赖的相对熵呈现增长趋势. 这进一步揭示了在模空间中, 黑洞从霍金鞍点向副本虫洞鞍点的演化过程具有不可逆性.
核物理学

编辑推荐
2025, 74 (8): 082501.
doi: 10.7498/aps.74.20241775
摘要 +
伽马单中子出射反应截面是核工程输运计算中的重要参数, 部分核素(γ, n)的反应测量因来自不同实验室而分歧明显. 本文基于变分自编码器方法, 针对原子核质量数在29—207区域的伽马单中子出射反应截面实验测量数据进行分析, 有效识别多家测量之间的离群点. 首先, 研究变分自编码器方法, 建立伽马单中子光核测量数据离群点识别网络; 其次, 对$^{29}\text{Si}$, $^{54}\text{Fe}$, $^{63}\text{Cu}$, $^{141}\text{Pr}$, $^{181}\text{Ta}$, $^{206}\text{Pb}$和$^{207}\text{Pb}$的29家多能点测量数据进行离群点识别; 最后, 计算离群点识别前后的实验数据与国际原子能机构光核评价数据库(IAEA-2019-PD)评价值之间的偏差, 检测变分自编码器的分析效果. 研究表明, 变分自编码器方法可以有效识别(γ, n)反应实验测量离群点, 其中$^{54}\text{Fe}$,$^{63}\text{Cu}$, $^{181}\text{Ta}$, $^{206}\text{Pb}$和$^{207}\text{Pb}$的伽马单中子出射反应截面与IAEA-2019-PD评价结果一致性更高, 验证了该方法在核数据研究中的应用潜力.
原子和分子物理学

2025, 74 (8): 083201.
doi: 10.7498/aps.74.20250052
摘要 +
在室温铯原子气室中利用探测光(852 nm)与耦合光(510 nm)构建的里德伯阶梯型结构, 实现了基于射频场缀饰的直流电场Floquet-电磁诱导透明(Floquet-electromagnetically induced transparency, Floquet-EIT)光谱, 并研究了直流电场下的Floquet-EIT光谱特性. 实验发现, 仅射频电场作用时, EIT光谱只呈现偶数阶边带, 而当射频场与直流电场同时作用时, 实验观测到Floquet-EIT的一阶边带信号. 随着直流电场强度增大, 一阶边带幅值逐渐升高. 然而, 当直流电场增大到一定强度时, 强电场会导致边带间相互串扰, 使边带幅值下降, 但增大射频频率可以延缓直流电场对一阶边带的串扰影响. 最后对比Floquet-EIT光谱的边带幅值与DC-Stark光谱的频率偏移在微弱直流电场下的相对标准偏差, 发现前者在微弱电场下的测量精确度明显优于后者. 本文工作为直流电场和低频电场的量子传感测量提供了新思路.
电磁学、光学、声学、传热学、经典力学和流体动力学

编辑推荐
2025, 74 (8): 084201.
doi: 10.7498/aps.74.20250027
摘要 +
大气风场在全球气候研究和空间探测中具有重要作用, 多普勒差分干涉仪作为新型被动测风干涉仪, 其通过测量大气气辉谱线的多普勒频移引起的相位变化量来反演大气风速, 但环境温度波动会导致像面相对于干涉仪发生漂移, 从而影响风场测量结果. 本文提出一种在光栅上刻蚀周期性刻槽, 并对其成像图案进行建模与全局拟合以实现高精度成像漂移检测的方法. 对刻槽图像的信噪比及模型参数拟合误差对检测结果的影响进行仿真分析, 结果表明, 图像信噪比、刻槽数量拟合精度与刻槽宽度拟合精度是影响检测精度的关键因素, 而刻槽图像边缘的平滑度的拟合精度对检测结果影响较小. 在近红外多普勒差分干涉仪的热稳定实验中, 通过对实验所测数据人为施加漂移量, 并进行成像漂移监测, 结果表明该方法能够实现9.96 nm的检测精度. 此外, 经成像漂移校正后的干涉图相位的局部振荡显著减弱, 表明该方法能有效检测与校正成像漂移, 显著提升干涉图像相位稳定性, 为高精度风速测量提供了可靠保障.

编辑推荐
2025, 74 (8): 084202.
doi: 10.7498/aps.74.20250010
摘要 +
提出了一种基于物理驱动的融合注意力机制的新型卷积网络单像素成像方法. 通过将结合通道与空间注意力机制的模块集成到一个随机初始化的卷积网络中, 利用单像素成像的物理模型约束网络, 实现了高质量的图像重建. 具体来说, 将空间与通道两个维度的注意力机制集成为一个模块, 引入到多尺度U-net卷积网络的各层中, 通过这种方式, 不仅可以利用注意力机制在三维数据立方中提供的关键权重信息, 还充分结合了U-net网络在不同空间频率下强大的特征提取能力. 这一创新方法能够有效捕捉图像细节, 抑制背景噪声, 提升图像重建质量. 实验结果表明, 针对低采样率条件下的图像重建, 与传统非预训练网络相比, 融合注意力机制的方案不仅在直观上图像细节重建得更好, 而且在定量的评价指标(如峰值信噪比和结构相似性)上均表现出显著优势, 验证了其在单像素成像中的有效性与应用前景.
