专题: 微纳光电子与激光
2022, 71 (2): 024206.
doi:10.7498/aps.71.20212442
摘要 +
光纤激光器作为推动各领域发展的基础硬件, 在轨道交通、光纤通信、新材料制造、动力电池加工、军事国防和医疗等领域都有广泛的应用价值. 光纤激光器被动锁模技术的核心器件是可饱和吸收体, 它对光纤激光器实现高能量、窄脉宽、大功率的激光输出起决定性作用. 依托传统材料和传统结构的可饱和吸收体, 由于无散热机制, 光作用到材料上的光斑大小与光纤出射直径几乎相同, 容易超过可饱和吸收体的损伤阈值从而造成损坏. 因此, 调整可饱和吸收体制备工艺和结构, 对于提高可饱和吸收体的损伤阈值, 实现性能优良、稳定性高的脉冲激光具有重要意义. 本文综述了高损伤阈值可饱和吸收体国内外研究现状, 指出了高损伤阈值可饱和吸收体可能的发展方向.
2022, 71 (2): 024203.
doi:10.7498/aps.71.20211539
摘要 +
众所周知, 具有高布里渊增益的片上波导在光子学领域具有广泛的应用. 硅基片上布里渊激光器被广泛应用到频率可调谐激光发射、锁模脉冲激光器、低噪声振荡器和光学陀螺仪等领域. 然而, 在硅基布里渊激光器中实现布里渊激光输出往往需要较长的波导长度, 不利于片上集成. 本文提出了一种新型的波导结构, 由硫族化物As2S3矩形和一个空气细缝组成. 由于空气细缝的存在, 辐射压力使布里渊非线性的增强远远超过了仅由材料非线性产生的增强. 使得布里渊增益达到了1.78 × 105W–1·m–1, 相比之前报道的后向受激布里渊散射(SBS)增益(2.88 × 104W–1·m–1)扩大了将近10倍, 产生了4.2—7.0 GHz范围的声子频率调谐, 该方法为设计用于前向SBS的纳米级光波导提供了新的思路, 同时这种增强的宽带相干声子发射为片上CMOS信号处理技术的混合铺平了道路.
2022, 71 (2): 029101.
doi:10.7498/aps.71.20211538
摘要 +
针对超表面相位调控中的无源及离散特性, 本文拟将等宽悬链线超构单元与非易失性相变介质结合, 探索研究一种高效连续相位调制的双稳态相变有源波前超构开关. 首先在9—10 µm之间的宽带中红外波段实现了可动态切换的波前偏转开关; 当相变层在非晶态和晶态之间切换时, 入射光波前分别呈现异常反射和正常的镜面反射, 即“开” 或“关”两个偏转状态. 其次展示了一种可动态切换的高阶贝塞尔光束开关: 非晶态时, 9.6 µm波长垂直入射下交叉极化转换效率接近100%, 产生正常的几何相位调控与二阶贝塞尔聚焦, 即“开”态; 而相变至晶态时, 交叉极化与几何相位调控被“关”闭. 本质上, 自旋-轨道相互作用具有无色散的相位调控保证了该类器件的宽波段工作特性, 在未来的有源光电子集成、光通讯等应用领域中具有重大潜力.
专题: 纳米工程和热物理
编辑推荐
2022, 71 (2): 023601.
doi:10.7498/aps.71.20211876
摘要 +
传统高分子聚合物是良好的电绝缘体和热绝缘体. 高分子聚合物具备质量轻、耐腐蚀、可加工、可穿戴、电绝缘、低成本等优异特性. 高分子聚合物被广泛应用于各种器件. 由于高分子材料的热导率比较低(0.1—0.5 W·m–1·K–1), 热管理(散热)面临严峻的挑战. 理论及实验工作表明, 先进高分子材料可以具有比传统传热材料(金属和陶瓷)更高热导率. Fermi-Pasta-Ulam (FPU)理论结果发现低维度原子链具有非常高的热导率. 广泛使用的聚乙烯热绝缘体可以被转变为热导体: 拉伸聚乙烯纳米纤维的热导率大约为104 W·m–1·K–1, 拉伸的聚乙烯薄膜热导率大约为62 W·m–1·K–1. 首先, 本文通过理论和实验结果总结导热高分子材料的传热机理研究进展, 并讨论了导热高分子聚合物的制备策略; 然后, 讨论了在传热机制及宏量制备方面, 高分子聚合物研究领域所面临的新挑战; 最后, 对导热高分子的热管理应用前景进行了展望. 例如, 导热高分子聚合物在耐腐蚀散热片、低成本太阳能热水收集器、可穿戴智能冷却服饰、电子绝缘却高导热的电子封装材料等领域具有不可替代的热管理应用前景.
编辑推荐
2022, 71 (2): 024401.
doi:10.7498/aps.71.20211854
摘要 +
辐射制冷是一种通过光谱调控来实现降温的新型制冷技术, 相比于传统的主动制冷技术, 如吸收式制冷、压缩制冷等, 具有独特的优势, 在环境保护和能源利用方面具有重要意义. 本文首先从辐射制冷的基本原理出发, 介绍了自然界中生物所具有的辐射降温特性. 不同生物通过其材料、微观结构、行为等实现辐射制冷调控, 为人类探究新型辐射制冷材料和器件带来了启发. 本文也归纳了生物的辐射制冷机制, 总结了生物结构的优化方法, 并介绍了当前仿生辐射制冷的研究进展, 对仿生辐射制冷的研究方向、应用前景和材料制备方法进行了展望. 高功率、智能化的辐射制冷材料和器件是未来仿生辐射制冷的重要发展方向, 先进微纳加工技术的融入将使仿生辐射制冷在未来具有更广阔的市场和应用.
2022, 71 (2): 026501.
doi:10.7498/aps.71.20211887
摘要 +
本文简要阐述了全固态锂离子电池的特点及其内部热输运研究的意义. 介绍并总结了国内外与正极材料、负极材料、固态电解质, 以及电极与电解质界面热输运性质相关的实验和理论工作. 针对脱嵌锂过程对电极材料热导率的影响机理尚不明确, 非晶态转变对电极材料热输运研究的挑战, 界面热输运模型与方法不足等问题, 系统梳理了全固态锂离子电池内部热输运的重要前沿科学问题.
总论
2022, 71 (2): 020201.
doi:10.7498/aps.71.20201940
摘要 +
基于金融物理学中著名的对数周期幂律模型(log-periodic power law model, LPPL)来预警2015年6月份中国上证综合指数、创业板指数的崩盘. 鉴于已有采用LPPL模型预警市场崩盘的研究均只考虑市场历史交易数据. 本文将投资者情绪因素纳入到LPPL模型建模过程, 以改进LPPL模型的预警效果. 采用文本挖掘技术结合语义分析方法对抓取的财经媒体的股评报道进行词频统计, 以构建媒体情绪指数. 进一步修改LPPL模型中的崩溃概率函数表达式, 将其表示为关于历史交易数据及媒体情绪的函数, 构建LPPL-MS组合模型预警股市崩盘. 实证结果表明, 本文所构建的LPPL-MS组合模型相比LPPL模型具有更高的预警精度, 其预测的大盘见顶的临界时点与上证指数、创业板指数真实的见顶时点更为接近, 并且其拟合结果通过了相关检验.
编辑推荐
2022, 71 (2): 020301.
doi:10.7498/aps.71.20210881
摘要 +
量子中继是长距离纠缠分发的关键组成部分, 而基于原子系综存储的读出效率是量子中继能否实用化的一个重要指标. 本文利用冷原子系综中的自发拉曼散射过程产生Duan-Lukin-Cirac-Zoller量子记忆, 在原子系综周围搭建环形腔, 增强光与原子相互作用, 从而提高读出效率, 然而, 腔内原子的能级分裂使量子记忆的读出效率降低. 本文研究了读出效率随读光相对于原子共振线失谐量的变化关系. 结果显示: 当读光的失谐量为80 MHz时, 本质读出效率为45%, 这时腔对读出效率的增强倍数为1.68倍.
2022, 71 (2): 020501.
doi:10.7498/aps.71.20211077
摘要 +
基于一维弹道导体, 建立了三端纳米线制冷机模型. 该模型是由一个中间空腔和左右电子库组成, 中间空腔和两电子库通过一维纳米线导体进行连接. 利用朗道方程和基本热力学公式推导出两电子库之间电荷流和能量流的表达式, 进而得出该制冷机模型的工作区间, 然后分析其性能特征并讨论制冷机性能优化. 研究表明: 不同的参数下该制冷机会有不同的制冷区间, 但每个制冷区间都存在一个温差上限, 超过该温差, 此装置将不能进行制冷. 制冷率随制冷系数变化的特征曲线为回原点扭叶型曲线, 这为衡量该制冷机性能提供了重要指标. 尽可能减小纳米线的能级宽度会提高该制冷机的工作性能.
2022, 71 (2): 020701.
doi:10.7498/aps.71.20211376
摘要 +
有机-无机杂化型比色湿度传感器可通过电学信号和颜色变化获取环境湿度, 并因其特征颜色区分度高、稳定性好、制备工艺简单等优点, 在湿度监测领域具有广阔的应用前景, 但其通常响应恢复时间长, 从而不利于湿度实时监测. 本文在聚酰亚胺(PI)-碘化镍(NiI2)有机无机杂化材料中掺杂纳米SiO2微球制备得到PI-SiO2/NiI2复合薄膜及比色湿度传感器, 对其表面形貌和湿敏特性进行了研究. 结果显示, PI-SiO2/NiI2薄膜具有蜂巢状的表面形貌, 传感器的特征颜色显著, 湿度响应时间小于1.5 s, 恢复时间小于18 s. 研究表明, 纳米SiO2微球掺杂能够较为显著地改善有机-无机杂化型比色湿度传感器的响应恢复特性, 这对于传感器性能的提升具有一定参考意义.
基本粒子物理学与场
2022, 71 (2): 021401.
doi:10.7498/aps.71.20211083
摘要 +
缪子多模态成像有效利用了宇宙线缪子与材料相互作用产生的散射信息以及产生次级诱发中子的缪子信息. 为对缪子多模态成像图像质量进行分析, 基于GEANT4程序设置了探测模型, 从缪子多重库仑散射模块和缪子诱发中子模块两部分对探测模型可靠性进行了验证, 开发了缪子多模态成像模拟程序, 得到了重建图像. 成像12 h可达到4 mm的空间分辨率, 成像时间在小时量级可清晰分辨边长10 cm的235U立方体和其他常见的高、中、低原子序数材料立方体. 经过12 h成像时间, 包覆模型的缪子散射成像图像会造成误判, 但缪子多模态成像图像能够正确反映235U材料存在. 不同成像时间内, 缪子多模态成像图像的结构相似性指标均优于单一成像方法成像图像. 研究结果表明与缪子散射成像图像和诱发中子符合的缪子成像图像相比, 缪子多模态成像图像有更好的成像质量, 能够适应更复杂的成像场景, 在特殊核材料的检测识别方面更有优势.
原子和分子物理学
2022, 71 (2): 023101.
doi:10.7498/aps.71.20211441
摘要 +
运用多参考组态相互作用(MRCI+Q)方法, 对硫化锑(SbS)能量最低的3个Ʌ-S离解极限的所有电子态以及考虑自旋-轨道耦合效应后分裂所得的Ω态进行了计算. 得到27个Ʌ-S电子态及能量最低的12个Ω态的电子结构、光谱常数和振动能级等信息. Sb原子和S原子能级的计算值与实验值相符很好. 分析表明自旋-轨道耦合效应对光谱常数与振动能级的影响总体上并不显著. 对X(3/2)→X(1/2), 2(1/2)→X(1/2), 4(1/2)→X(1/2), 5(1/2)→X(1/2)及6(1/2)→X(1/2)跃迁的振动光谱进行了模拟与分析, 其中X(3/2)→X(1/2)谱带位于中红外波段, 其他谱带均位于可见光波段. 此外, 对氮族元素硫化物的电子态进行了验证计算, 计算结果与已有实验结果吻合较好, 体现了同族元素代换后相关物性的渐变规律性.
2022, 71 (2): 023301.
doi:10.7498/aps.71.20211659
摘要 +
在自制直线式飞行时间质谱仪上进行了双色共振增强双光子电离实验, 获得了振动分辨的邻羟基苯腈的共振增强多光子电离(resonance enhanced multiphoton ionization, REMPI)光谱, 结合高精度密度泛函理论计算和Franck-Condon光谱模拟, 详细分析了光谱特征, 发现了大量基频、泛频和组合振动, 并进行了光谱归属. 大部分苯环的基频振动归属为环在平面内的畸变或平面内的摇摆, 这与分子激发过程中苯环的扩张有关. 理论和实验结果都表明, REMPI光谱的低频段信号强, 背景低, 谱带少, 分辨率好. 随着振动频率的增加, 信号向相反的方向变化. 这是由于低频段光谱主要来自于低频的基频振动、少量泛频的贡献. 随着振动频率增加, 泛频和各种模的组合振动逐渐增多, 导致了高频区谱带稠密, 分辨率变差. 高阶振动和多模的组合振动通常有较低的Franck-Condon因子, 因此信号随频率增大逐渐变弱, 信噪比变差.
电磁学、光学、声学、传热学、经典力学和流体动力学
2022, 71 (2): 024101.
doi:10.7498/aps.71.20210701
摘要 +
基于时间反演腔的电磁波时间反演技术在许多方面有着潜在的应用, 如脉冲压缩、功率合成、微扰探测、波束成形等. 其中, 时间反演腔通常采用具有多径传输特征的微波混沌腔. 利用衍射理论, 虽然可以证明这类腔体在时间反演过程中具有时空聚焦特性并可用于脉冲压缩, 但是它不能用于分析腔体的反演性能. 为了得到一个合适的分析方法并可用于指导时间反演腔设计, 本文基于信道理论, 分析电磁波传播的散射、扩散和衰减特性, 构建了时间反演腔的多径信道模型, 并详细研究了路径之间的串扰特征, 给出反演重构信号的时间旁瓣产生机理、时移特征以及对主瓣的干扰情况. 另外, 根据随机平面波假设, 还分析了空间焦斑的分布特征. 实际焦斑大小不但受限于衍射极限而且还与初始焦斑大小有关. 这些理论分析结果与实验和数值仿真结果基本一致.
2022, 71 (2): 024201.
doi:10.7498/aps.71.20211397
摘要 +
为了减小器件尺寸、实现超快速响应和动态可调谐, 研究了基于石墨烯纳米条波导边耦合矩形腔的单波段和双波段的等离子体诱导透明(PIT)效应, 通过耦合模式理论和时域有限差分法从数值计算和模拟仿真两方面分析了模型的慢光特性. 通过调节石墨烯矩形腔的化学势, 同时实现了单波段、双波段PIT模型的谐振波长和透射峰值的可调谐性. 当石墨烯的化学势增加时, 各个波段PIT窗口的谐振波长逐渐减小, 发生蓝移. 此外, 通过动态调谐石墨烯矩形腔的谐振波长, 当石墨烯矩形腔的化学势为0.41—0.44 eV时, 单PIT系统的群折射率控制在79.2—28.3之间, 可调谐带宽为477 nm; 当石墨烯矩形腔1, 2, 3的化学势分别为0.39—0.42 eV, 0.40—0.43 eV, 0.41—0.44 eV时, 双PIT系统的群折射率控制在143.2—108.6之间. 并且, 整个系统的尺寸小于0.5 μm2. 研究结果对于超快速、超紧凑型和动态可调谐的光传感、光滤波、慢光和光存储器件的设计和制作具有一定的参考意义.
编辑推荐
2022, 71 (2): 024202.
doi:10.7498/aps.71.20211122
摘要 +
用于在宽量程范围内标定原子磁力仪的灵敏度的复现磁场通常由精密电流源和标准线圈产生, 电流源噪声将直接影响原子磁力仪在宽量程范围内标定的灵敏度. 本文基于抽运-检测型原子磁力仪首先提出抑制复现磁场漂移的磁补偿方法, 其次开展宽量程范围内电流源的噪声和原子磁力仪的灵敏度之间依赖关系的研究. 研究结果表明, 抽运-检测型原子磁力仪的灵敏度主要由电流源噪声决定, 因此可用特定磁场下的灵敏度估算电流源在对应输出电流条件下的电流噪声. 本文研究对弱磁传感器灵敏度指标的标定、高精度电流源的研制、磁感应强度计量和电流计量的协同发展都具有参考价值.
2022, 71 (2): 024204.
doi:10.7498/aps.71.20211409
摘要 +
光学参量振荡器是重要的中红外相干光源. 近年来, 在激光调制方面, 二维过渡金属硫化物展现了非线性可饱和吸收特性, 因此有望成为光学参量振荡器基频激光的优良调制元件. 本工作中, 首先, 实验测量了层状二硫化钨(WS2)调制固体激光的输出特性. 其次, 结合主动声光Q开关, 实现了主被动双调Q光参量振荡的运转, 得到了纳秒脉冲宽度的中红外脉冲, 并研究了WS2对光参量转换的优化特性, 发现WS2纳米片除了能够压缩脉冲、提高峰值功率外, 还能缓解单主动调Q光学参量振荡器中的“输出饱和下降”现象, 这种现象可能起因于砷酸钛氧钾 (KTiOAsO4, KTA)的制冷不均匀. WS2的可饱和吸收效应能够显著压缩光斑, 减少高斯光斑的边缘能量, 因此能够缓解KTA的温度梯度分布, 从而优化输出特性. 最后, 基于WS2的非线性透过率曲线, 考虑非均匀展宽机制和大信号下的非饱和吸收, 计算了WS2的可饱和吸收特性参数, 并求解了层状WS2调制光学参量振荡器的速率方程组. 本文在实验上展示了二维过渡金属硫化物对激光非线性频率变换的优化效果, 尤其是对热效应的缓解; 同时, 为二维材料调制激光的动力学模拟提供了参数依据.
2022, 71 (2): 024205.
doi:10.7498/aps.71.20210974
摘要 +
以单模光纤为基础的传统光通信系统的容量已趋近其理论极限, 多芯少模光纤是突破现有传输容量瓶颈的一种有效方式. 本文设计了一种低串扰5-LP模的弱耦合异质芯7芯光纤, 采用沟槽辅助和气孔隔离相结合的方法, 在标准125 μm外径的情况下实现了芯间和模间的低串扰. 利用有限元法计算了纤芯之间的串扰、有效模面积等. 经过设计优化, 光纤在光通信C+L波段可以稳定传输5个LP模式, 其中LP21与LP02模之间的有效折射率差最小, 且大于1.1 × 10–3; 光纤中LP31模式的芯间串扰最大且低于–50 dB/km, 因此该光纤可以同时实现模间和芯间的低串扰传输. 7个纤芯中5个LP模的有效模面积均大于86 μm2, 在波长1550 nm处相对纤芯复用因子为57.63, 该光纤可用于大容量高速光纤传输系统.
2022, 71 (2): 024301.
doi:10.7498/aps.71.20211518
摘要 +
基阵的信噪比增益与噪声场空间特性密切联系, 海洋环境噪声空间特性建模始终是水声学研究的热门问题. 声纳功能不同, 其工作频段和带宽通常也不相同, 因此, 任意频带噪声场的空间相关系数对声纳系统设计具有重要参考价值. 依据海洋环境噪声场的产生过程, 在高频近似条件下, 本文提出一种噪声场时域建模方法, 给出了水平分层介质中表面噪声时域声压和质点振速的积分表示, 为噪声矢量场宽带模型的建立奠定了基础. 根据风成噪声谱结构, 数值计算了不同频带、不同谱斜率的噪声场空间相关系数, 揭示了带宽、谱结构对风成噪声空间特性的影响规律. 随着阵元间距和带宽增大, 噪声矢量场各分量的空间相关系数的振荡周期数逐渐减少, 振荡幅度逐渐减小, 这是由于噪声场相关系数频域平均的结果. 当谱斜率小于零时, 宽频带噪声场的空间相关半径大于窄带噪声场的相关半径, 这是由于低频段噪声起主要贡献的结果, 实测海洋环境噪声声压场竖直方向空间相关特性变化规律与理论结果一致. 本文模型对换能器成阵技术研究以及环境参数反演具有潜在应用前景.
2022, 71 (2): 024302.
doi:10.7498/aps.71.20211132
摘要 +
内孤立波是一种常见于浅海海域的非线性内波, 具有振幅大、周期短和流速强等特点, 它通过扰动水体中的温盐分布使声速剖面产生明显的距离依赖性, 进而影响水下声传播特性. 内波自生成后通常以1 m/s 量级的速度传播, 运动的内波使声传播路径上的声波模态能量在空间和时间上剧烈起伏. 本文定义模态强度为模态系数模值 (模态幅度) 的平方, 并用其衡量各阶模态所含声能量的大小. 文中基于耦合简正波理论, 推导了内波运动时声波模态强度起伏的表达式, 将模态强度表征为振荡项和趋势项的线性叠加. 以往的工作大多局限于单独从时域或频域研究内波运动时声波模态强度的时变规律, 本文则结合短时傅里叶变换在时频平面上揭示了模态强度的起伏机理. 理论推导和数值仿真均表明内孤立波使各阶声波模态之间发生能量交换, 即模态耦合. 内波的动态传播进一步引起模态干涉, 这种干涉效应表现为模态强度中的振荡项并使模态强度随时间快速起伏. 受模态剥离效应 (不同阶模态之间衰减系数的差异) 的影响, 趋势项的幅度随时间不断变化, 进而对模态干涉引起的振荡叠加了时变的偏置. 模态强度的整体走势和振荡项中各频率分量振幅的时变特征均与模态衰减密切相关. 同时, 本文使用深度积分声强作为总接收声场强度的度量, 研究了内波运动时模态强度起伏对接收阵位置处声能量的影响. 结果表明, 能量较大且起伏剧烈的模态强度将主导总接收声强的变化.
2022, 71 (2): 024701.
doi:10.7498/aps.71.20210832
摘要 +
基于微通道两相流的微流控技术已得到广泛的应用, 精确控制通道中气泡或液滴的尺寸对相关微流控系统的设计起到至关重要的作用. 本文基于流体体积法重构Y型微通道内的气泡破裂行为, 系统研究了气泡无量纲尺寸(1.2—2.7)、出口流量比(1—4)以及主通道雷诺数(100—600)对气泡破裂行为的影响. 发现气泡非对称破裂过程分为3个阶段: 延伸阶段、挤压阶段和快速破裂阶段. 在气泡初始尺寸较小或出口流量较大的情况下, 气泡不破裂, 只经历延伸阶段和挤压阶段. 进一步针对不同尺寸和出口流量比揭示了气泡的4种破裂模式: 隧道-隧道破裂、阻塞-阻塞破裂、隧道-阻塞破裂和不破裂. 随着出口流量比的增大, 气泡的破裂过程逐渐变为非对称破裂, 其破裂模式沿隧道-隧道破裂/阻塞-阻塞破裂、逐渐向隧道-阻塞破裂和不破裂方向转变. 在此基础上获得了不同雷诺数和初始气泡尺寸下, 气泡破裂的临界流量比以及气泡破裂后子气泡体积比随出口流量比的变化规律并提炼了相应的准则关联式, 可为精确调控破裂后子气泡的尺寸提供理论指导.
2022, 71 (2): 024702.
doi:10.7498/aps.71.20211425
摘要 +
为了改善大展弦比飞翼模型纵向操纵性和稳定性, 在低速风洞中开展了等离子体流动控制技术的试验研究. 采用粒子图像测速技术获取了等离子体对翼面流场的影响. 采用静态测力技术获取了等离子体对模型气动力和升降舵舵效的影响. 采用虚拟飞行试验技术获取了等离子体对俯仰角和俯仰角速度时间历程的影响. 通过对粒子图像测速和测力试验结果的分析表明, 等离子体能够抑制翼面流动分离, 阻止气动中心前移, 改善模型的大迎角纵向气动特性. 通过分析不同舵偏角的测力数据, 来流风速V= 50 m/s时等离子体能够改善飞翼模型大迎角的升降舵舵效, 在不同舵偏角时均使模型的最大升力系数提高约0.1、失速迎角推迟4°以上. 通过分析虚拟飞行试验结果, 等离子体能够将模型的临界俯仰角提高3.6°, 能够改善飞翼模型的纵向飞行稳定性和操纵性.
气体、等离子体和放电物理
2022, 71 (2): 025201.
doi:10.7498/aps.71.20211150
摘要 +
本文利用流体模型对气压为266 Pa的氧气环境下空心阴极放电的放电特性及不同粒子的生成损耗机制进行了模拟研究. 模型中包含11种粒子和48个反应. 在该模拟条件下, 周围阴极所对应的负辉区产生重叠, 表明放电中存在较强的空心阴极效应. 计算得到了不同带电粒子与活性粒子的密度分布. 带电粒子密度主要位于放电单元中心区域, 电子和负氧离子O–是放电体系中主要的负电荷, 其密度峰值分别达到5.0 × 1011cm–3和1.6 × 1011cm–3;
${\rm{O}}_2^+ $
是放电体系中主要的正电荷, 其密度峰值为6.5 × 1011cm–3. 放电体系中同时存在丰富的活性氧粒子, 并且其密度远高于带电粒子, 按其密度高低依次为基态氧原子O、单重激发态氧分子O2(a1Δg)、激发态氧原子O(1D)、臭氧分子O3. 对电子、O–和
${\rm{O}}_2^+ $
的生成和损耗的反应动力学过程进行了深入分析, 同时给出了不同活性氧粒子的生成损耗路径概要图. 结果表明各粒子之间存在一个复杂的相互耦合的过程, 每一个反应在生成某种粒子的同时也在消耗相应的其他粒子, 最终各种粒子密度达到一个动态平衡.
2022, 71 (2): 025202.
doi:10.7498/aps.71.20210470
摘要 +
通过仿真和实验相结合的手段, 以直流脉冲电压驱动的双环电极结构He大气压等离子体射流为例, 研究了电压上升沿时间对管内放电等离子体发展演化特性的影响. 随着电压上升沿的改变, 管内介质阻挡放电(dielectric barrier discharge, DBD)区出现空心和实心两种放电模式. 上升沿为纳秒和亚微秒量级时, 以空心模式发展, 上升沿持续增加后转变为实心模式. 放电模式本质上受鞘层厚度、管内电场和表面电荷密度分布的影响, 鞘层厚度小于1.8 mm时等离子体通常以空心模式传播, 等于1.8 mm时等离子体的径向传播范围有限而转变为实心传播. 管内DBD区, 电场以轴向分量为主时, 等离子体以放电起始时的模式传播; 而在地电极内部, 由于外施电场方向发生径向偏转, 同时管壁沉积的正电荷形成径向自建电场, 两者叠加形成的强径向电场致使放电以空心模式传播.
编辑推荐
2022, 71 (2): 025203.
doi:10.7498/aps.71.20211018
摘要 +
为了实现激光约束核聚变(ICF)的自持聚变目标, 对靶壳内氘氚冰的质量提出了极其苛刻的要求, 冰层内表面和靶壳的同心度要求大于99.9%, 冰层内表面均方根粗糙度(RMS)优于1 μm. 高质量的冷冻氘氚靶建立在靶壳内高质量氘氚冰层的前提之上. 单晶是冰层的最好形态, 在靶壳内获得氘氚冰籽晶是基础条件. 本文通过采用逐渐降低升温速率的台阶控温方法, 开展了充气微管内保留籽晶的研究, 揭示了充气微管内保留籽晶的形核机理, 实验结果表明, 利用充气管口可保留稳定、单一的籽晶, 在相同的过冷度下, 当氘氚籽晶c轴方向与充气管轴向平行时, 生长速度较c轴垂直于充气管轴向时的速度慢约1—2个量级, 为获得高质量的籽晶从而形成高质量的氘氚冰提供了参考和支撑.
凝聚物质:结构、力学和热学性质
编辑推荐
2022, 71 (2): 026101.
doi:10.7498/aps.71.20211360
摘要 +
半金属铋(Bi)的表面合金具有的Rashba效应, 和其具体结构性质有重要关联. 本文结合扫描隧道显微镜(STM)和密度泛函理论(DFT), 系统地研究了Bi原子在Ag(111)和Au(111)上的不同初始生长行为. 在室温Ag(111)上, 连续的Ag2Bi合金薄膜会优先在Ag台阶边缘形成; 在570 K Ag(111)上, 随着覆盖度增加到0.33 分子层(ML), Bi优先取代配位数低的台阶边原子并从单原子随机分布转变为长程有序的Ag2Bi合金相; 随着覆盖度增加, Ag2Bi通过退合金过程转变成
$ p\times \sqrt{3} $
结构的Bi膜. Bi在室温和570 K的Au(111)上的生长行为一致: 在覆盖度低于0.40 ML时, Bi会优先吸附在配位为5的Au原子上, 并以单原子和团簇的形式分别分散在Au(111)的密堆积区域和鱼骨纹重构的拐角处; 随着覆盖度增加到0.60 ML, 无序的Bi会逐渐转变成长程有序的(
$ \sqrt{37}\times \sqrt{37} $
)相; Bi的吸附会导致Au(111)表面应力逐步释放. Bi在Ag(111)和Au(111)上的不同生长行为表明, Bi原子与衬底之间的相互作用起着关键作用.
编辑推荐
2022, 71 (2): 026102.
doi:10.7498/aps.70.20211530
摘要 +
具有优良磁热性能的材料是磁制冷技术应用的关键. 本文设计制备出了一种非晶态四元Gd45Ni30Al15Co10合金条带, 系统地研究了该合金的磁热性能. Co的引入增加了合金的非晶态热稳定性, 扩大了过冷液相区宽度. Gd45Ni30Al15Co10非晶态合金条带的居里温度和有效磁矩分别为80 K和7.21μB, 在10 K温度下饱和磁化强度达到173 A·m2·kg–1, 矫顽力为0.8 kA·m–1, 具有优异的软磁性能. 在5 T的外加磁场下, Gd45Ni30Al15Co10非晶态合金的磁熵变峰值和相对制冷能力分别高达10.2 J·kg–1·K–1和918 J·kg–1. 该合金具有典型的二级磁相变特征, 可以在较宽的温度范围内实现磁制冷, 且Gd原子含量低于50%, 成本较低, 表明该合金是一种理想的磁制冷材料.
2022, 71 (2): 026103.
doi:10.7498/aps.71.20211440
摘要 +
本工作建立了外加应力作用下UO2中空洞演化的相场模型. 首先, 使用摄动迭代法求解了弹性平衡方程, 对外加应力下单个空洞周围的应力分布进行了计算, 结果表明空洞边缘有应力集中现象, 模拟得到的应力分布和解析解一致. 然后, 利用相场方法模拟了不同外加应力下单个空洞的演化过程, 结果表明随着外加应力的增大, 空洞的生长速度加快. 最后, 研究了外加应力对多晶体系中晶粒长大和空洞演化的影响, 结果表明, 不同晶粒内的应力大小不同, 应力越小的晶粒越容易长大, 尺寸越大的空洞的边缘应力也越大. 晶间空洞与弯曲晶界存在相互作用, 一方面晶界附近的空洞会生长成透镜状, 另一方面空洞对晶界也有钉扎作用, 能减缓晶界的迁移. 此外, 外加应力会加速多晶系统中空洞的生长, 并且本文计算得到了外加应力与空洞半径的关系, 发现外加应力越大, 空洞的生长越快.
2022, 71 (2): 026701.
doi:10.7498/aps.71.20211449
摘要 +
动态重力测量可以提高重力场的勘测效率, 对基础地质调查、资源勘探、地球物理研究等具有十分重要意义. 本文基于冷原子重力仪、惯性稳定平台和牵引动力装置搭建了一套绝对重力动态移动测量系统, 并开展了绝对重力动态测量实验. 首先测量了不同牵引速度下的垂向振动噪声功率谱, 理论分析了其对动态重力测量的影响; 其次评估了不同牵引速度对原子干涉条纹对比度和直流偏置量的影响, 分析了动态环境下的振动补偿效果; 在最大牵引速度为5.50 cm/s、最大振动幅度为0.1 m/s2的情况下, 实验上仍能基于振动补偿技术恢复原子干涉条纹. 在此基础上, 通过开展不同T下的原子干涉条纹测量, 评估了动态测量环境下的绝对重力值, 在校正完系统误差并减去绝对重力初始值后得到的测量结果为(–1.22 ± 2.42) mGal (1 Gal = 0.01 m/s2). 最后, 通过与静态环境下的绝对重力测量值进行比较, 发现两者基本吻合. 本文开展的绝对重力动态移动测量实验有望为车载动态绝对重力测量提供数据参考.
2022, 71 (2): 026801.
doi:10.7498/aps.71.20210635
摘要 +
电力设备的安全运行很大程度上取决于避雷器的过电压保护水平, ZnO压敏电阻因具有优异的非线性伏安特性而广泛应用于电力系统避雷器的核心元件. 为了从微观结构上了解ZnO压敏电阻的电学性能, 本文采用基于密度泛函理论的第一性原理对含有锌填隙Zni与氧空位Vo缺陷的ZnO/β-Bi2O3界面进行分析计算, 并研究其在不同外电场下的相关电学性质. 计算结果表明, 弛豫后氧空位Vo缺陷发生迁移. 在外电场的作用下, 填隙Zn离子向界面处偏移, 界面能在电场强度超过0.1 V/Å后快速升高, 界面之间的相互作用力变大, 层间距减小, 体系导电性迅速增强. 采用差分电荷密度、功函数以及Bader电荷分析方法, 计算出了界面处的势垒高度, 证实了内建电场是ZnO压敏电阻具有非线性伏安特性的重要原因. 采用态密度分析的方法, 分析了原子轨道能级、陷阱能级以及能隙等微观参数对ZnO压敏电阻宏观导电性能的影响. 本工作通过调控外电场的强度对含有缔合缺陷的ZnO/β-Bi2O3界面不同电气参数进行分析, 为理解和调控ZnO压敏电阻的电学特性提供了新的思路.
凝聚物质:电子结构、电学、磁学和光学性质
编辑推荐
2022, 71 (2): 027301.
doi:10.7498/aps.71.20211370
摘要 +
研究径向压缩形变对碳纳米管电子输运性质的影响对搭建微纳碳基电子器件具有重要意义. 本文利用分子动力学模拟方法研究了碳纳米管与金属界面接触构型, 得出碳纳米管径向压缩形变的规律. 模拟结果表明: 碳纳米管在水平接触金属表面后, 其稳定状态下的径向压缩形变大小会受接触长度、管径大小、金属种类和片层数量的影响. 基于紧束缚密度泛函理论和非平衡格林函数结合的第一性原理, 系统地研究了不同直径、手性、片层、径向压缩形变碳纳米管的电子输运性质. 研究表明: 金属性单壁碳纳米管的电流呈线性增长趋势, 且电流-电压的大小只与偏压有关, 与直径大小无关; 当其存在径向压缩形变时, 电流在大偏压下增长趋势减缓, 甚至会出现平台效应. 半导体性单壁碳纳米管的导通电流随着径向压缩形变的增加而减小, 电流-电压曲线逐渐从半导体特性向金属特性转变. 随着径向压缩形变的增加, 双壁碳纳米管的电流-电压曲线变化规律与金属性单壁碳纳米管的电流-电压曲线变化规律一致, 但在相同偏压下, 双壁碳纳米管的电流比单壁碳纳米管的电流高1倍; 三壁碳纳米管的电流-电压曲线存在较大的振荡波动.
2022, 71 (2): 027401.
doi:10.7498/aps.71.20211157
摘要 +
超导涡旋运动引起的棘齿效应可以广泛应用于磁通泵、整流器和超导开关等装置. 金兹堡-朗道理论是研究超导磁通涡旋问题强有力的工具和手段. 本文采用有限差分法数值求解时间相关的金兹堡-朗道方程, 利用快速傅里叶变换方法求解耦合的热传导方程, 数值模拟了临界温度梯度超导薄膜磁通涡旋动力学行为, 提出了一种新的调节超导整流效应的方式, 并研究了临界温度梯度大小和缺陷位置对超导整流电压反转现象的影响规律. 由于超导边界势垒和缺陷吸引势对磁通涡旋的共同作用, 当缺陷位置偏向临界温度较高的一侧或者临界温度梯度较小时有利于观察到整流电压随交流幅值增大发生的反转现象.
2022, 71 (2): 027701.
doi:10.7498/aps.71.20211609
摘要 +
压电驻极体(也称为铁电驻极体)是一类具有强压电效应的微孔结构驻极体材料, 具有柔韧、低密度、低特性声阻抗等特征, 是制备柔性空气耦合声电换能器的理想材料. 针对器件对高灵敏度和高温工作环境的应用需求, 本文报道高性能氟化乙丙烯/聚四氟乙烯(FEP/PTFE)复合膜压电驻极体的制备和性能表征. 研究结果表明, FEP/PTFE膜的特性声阻抗为0.02 MRayl (1 Rayl = 10 Pa·s/m); 在小压强范围内的准静态压电电荷系数d33可高达800 pC/N, 且具有良好的压强特性. 基于FEP/PTFE复合膜压电驻极体的麦克风的灵敏度最高可达6.4 mV/Pa@1 kHz, 远高于文献报道的相同结构的压电驻极体麦克风的灵敏度, 且具有平坦的频响曲线. 对于直径为20 mm的超声波发射器, 当驱动电压Vp为600 V时, 样品中轴线上距离器件表面100 mm处, 40—80 kHz频率范围内产生的超声波的声压级为80—90 dB (参考声压为 20 µPa). 基于FEP/PTFE复合膜压电驻极体的声电换能器的热稳定性显著优于聚丙烯(PP)压电驻极体声电换能器: 在125 ℃下老化211 h, 器件的灵敏度保持初值的26%, 这得益于基体材料FEP和PTFE优良的空间电荷储存稳定性.
编辑推荐
2022, 71 (2): 027801.
doi:10.7498/aps.71.20211438
摘要 +
等离激元纳腔可有效调控稀土掺杂纳米晶的上转换发光特性, 其不仅能增强上转换发光强度, 还可实现上转换发光光谱的调节. 然而, 目前利用纳腔进行上转化发光光谱调节的研究主要基于系综实验. 相比系综实验, 单颗粒实验由于可对同一颗上转换纳米晶进行对比研究, 因而能够排除系综样品非均匀性对实验的影响. 本文基于原子力显微镜原位纳米操纵技术将单颗粒Yb3+/Tm3+共掺杂纳米晶与由单根金纳米棒构成的等离激元纳腔进行耦合, 实验上对比了同一颗纳米晶与金纳米棒耦合前后上转换发光的光谱、发光寿命和激发功率依赖特性的变化. 实验结果与理论上通过结合电磁仿真和速率方程模拟得到的结果相符. 研究结果表明, 等离激元纳腔调控纳米晶上转换发光光谱是激发场增强效应、Purcell效应和辐射效率变化三方面效应共同作用的结果.
2022, 71 (2): 027802.
doi:10.7498/aps.71.20210855
摘要 +
利用时域有限差分方法, 理论研究了由劈裂环和圆盘构成的金二聚体结构的光学性质, 分析了劈裂环的缺口取向和对称性破缺程度对其Fano共振特性的影响. 结果表明, 当缺口方向平行于二聚体中心连线时, 劈裂环的奇数阶和偶数阶模式均能与圆盘的偶极模式作用产生Fano共振, 且随着劈裂环的进一步破缺, 更多的偶数阶Fano共振能被激发出来; 但当垂直时, 不管劈裂环的缺口背对圆盘还是面向圆盘, 二聚体仅有偶数阶Fano共振能被激发出来, 且随着劈裂环内层中心远离圆盘而增强, 随着劈裂环的进一步破缺, 缺口背对圆盘的二聚体还能激发出多个奇数阶Fano共振, 但同时也引起偶数阶Fano共振的减弱, 而缺口面向圆盘的二聚体则仅发生偶数阶Fano共振的略微增大. 这些结果可望对基于多重Fano共振的多波段光子器件设计有一定的参考意义.
编辑推荐
2022, 71 (2): 027803.
doi:10.7498/aps.71.20211477
摘要 +
利用非平衡格林函数方法研究了多孔石墨烯纳米带的热输运性质. 结果表明, 由于纳米孔洞的存在, 多孔石墨烯纳米带的热导远低于石墨烯纳米带的热导. 室温下, 锯齿型多孔石墨烯纳米带的热导仅为相同尺寸锯齿型石墨烯纳米带热导的12%. 这是由于多孔石墨烯纳米带中的纳米孔洞导致的声子局域化引起的. 另外, 多孔石墨烯纳米带的热导具有显著的各向异性特征. 相同尺寸下, 扶手椅型多孔石墨烯纳米带的热导是锯齿型多孔石墨烯纳米带的2倍左右. 这是因为锯齿型方向上声子局域比扶手椅型方向上更加强烈, 甚至部分频率的声子被完全局域导致的.
物理学交叉学科及有关科学技术领域
封面文章
2022, 71 (2): 028101.
doi:10.7498/aps.71.20211344
摘要 +
全无机CsPbBr3钙钛矿材料因其本征稳定性好、成本低廉从而在光伏领域展现出巨大的应用潜力, 但目前CsPbBr3太阳能电池的光电转换效率仍远低于其他体系的钙钛矿太阳能电池. 本文以无空穴传输层结构的碳基CsPbBr3全无机钙钛矿电池作为研究对象, 以多步旋涂法为基础, 通过在PbBr2(DMF)溶液中添加2-苯乙胺溴盐(PEABr)来调控CsPbBr3薄膜的结晶质量, 降低薄膜缺陷态密度, 钝化晶粒间界, 并对其中的关键工艺参数包括CsBr的用量(旋涂次数)、旋涂PbBr2薄膜时的衬底预热温度以及退火温度进行了优化. 最终在大气环境下获得了兼具稳定和高效的无空穴传输层结构的碳基CsPbBr3太阳能电池, 器件的光电转换效率达到8.25%, 并在无封装条件下保存1500 h仍可保持90%以上的效率, 对于进一步拓展CsPbBr3钙钛矿电池的优化设计思路具有重要意义.
2022, 71 (2): 028102.
doi:10.7498/aps.71.20210835
摘要 +
为了提高钛合金表面微弧氧化层在海洋环境中的抗腐蚀和耐磨损性能, 在硅酸盐系电解液中添加不同浓度粒径在1 μm左右的TaC微粒, 制备了TaC掺杂微弧氧化层. 通过扫描电子显微镜、能谱仪和X射线光电子能谱仪等对微弧氧化层的形貌、元素组成及其化学状态进行表征与分析, 并对比评价了钛合金表面TaC掺杂微弧氧化层的厚度、表面粗糙度、硬度、耐磨性以及耐蚀性. 结果表明: 通过向电解液中添加TaC微粒, 钛合金表面微弧氧化层中存在TaC和Ta2O5; 较未添加TaC微粒制备微弧氧化层, 其表面形貌更为致密, 硬度提高了约83.2%, 在模拟海水中的摩擦系数由0.2降到了0.148, 由磨粒磨损转变为粘着磨损, 腐蚀电流密度下降了2个数量级, 并通过构建微弧氧化层在模拟海水中的磨损和腐蚀失效模型, 揭示了微弧氧化层中掺入TaC微粒对改善其抗腐耐磨性能的内在机理.
2022, 71 (2): 028201.
doi:10.7498/aps.71.20211555
摘要 +
本研究利用种子层辅助的水热反应法, 在导电玻璃上沉积生长三氧化钨(WO3)晶体结构薄膜. 通过调控水热反应溶液中盐酸、草酸的浓度以及后处理温度, 分别得到花朵状、海胆状和多孔花瓣状的WO3晶体结构薄膜. 采用扫描电子显微镜、X射线衍射、透射电子显微镜和电化学表征等手段研究了不同拓扑结构形成的机理及其对WO3电致变色性能的影响. 结果表明: 盐酸中的Cl–具有促进WO3晶体沿c轴方向生长的作用, 而草酸具有促进WO3晶体沿a轴方向生长的作用; 微米海胆状WO3的着色效率为42.37 cm2/C, 远远大于WO3花朵状(15.21 cm2/C)和花瓣状(12.71 cm2/C)的着色效率; 经过淬冷处理的微米花WO3表面呈多孔结构, 其着色效率高达56.95 cm2/C, 是未淬冷处理、表面光滑微米花WO3着色效率的近4倍, 同时也优于微米海胆状WO3的着色效率.
编辑推荐
2022, 71 (2): 028501.
doi:10.7498/aps.71.20210871
摘要 +
与传统条纹相机加速和偏转电子束的方法相比, 太赫兹强场的加速梯度和扫描偏转梯度有明显优势, 具备实现飞秒级超高时间分辨的能力. 本文基于这一新技术设计了一款基于太赫兹场操控电子束的超小型高时间分辨探测器. 从理论上分析了加速区的时间弥散与电子脉冲发射时刻以及初始时间弥散的关系, 并讨论了空间电荷效应对时间弥散的影响; 设计并优化了加速区和偏转区的太赫兹脉冲耦合增强装置, 太赫兹脉冲电场在该装置中的增强系数最高可达9.39. 最终通过计算和分析本探测器的时间弥散, 得到了时间分辨率优于50 fs的结果.
2022, 71 (2): 028502.
doi:10.7498/aps.71.20211535
摘要 +
批量生产中经常发生的锑化铟(InSb)芯片碎裂问题制约着InSb红外焦平面探测器(IRFPAs)成品率的提升. 经分析认为: 低周期液氮冲击下发生在器件边沿区域的InSb芯片破碎与该区域中迸溅金点的存在有关. 为从理论上明晰迸溅金点对InSb芯片局部碎裂的影响, 本文建立了包含迸溅金点的InSb IRFPAs结构模型, 分析了迸溅金点的存在对应力分布的影响. 在此基础上, 在应力集中处预置不同长度的初始裂纹用以描述InSb晶片中的位错, 以能量释放率为判据, 探究InSb芯片碎裂与迸溅金点和位错线长短的关系. 结论如下: 1) 迸溅金点的存在对InSb芯片碎裂的影响是局部的, 在迸溅金点与InSb芯片接触区域的两侧会形成两个应力集中点; 2) 环绕预置裂纹的能量释放率会随着预置裂纹长度的增加而加速增大, 当预置裂纹长度接近InSb芯片上表面时, 能量释放率近乎指数增加, 并在预置裂纹贯穿InSb芯片时达到最大值; 3) 迸溅金点引起的InSb芯片破碎属于I型断裂失效模式, 在多周期液氮冲击中, 位错线在应力集中效应的驱使下逐步扩展, 直至贯穿InSb芯片, 最终形成宏观碎裂失效现象.
2022, 71 (2): 028701.
doi:10.7498/aps.71.20211358
摘要 +
光片荧光显微术(light-sheet fluorescence microscopy, LSFM)采用薄片光束从侧面激发样品, 在垂直于光片方向上进行成像, 具有成像速度快、光学层析能力强以及光漂白和光毒性低等优点, 适用于对较大活体生物样品进行高质量、长时间三维动态观测. 然而, 传统高斯光束LSFM存在分辨率低和成像视场小的问题. 本文在双边照明LSFM的基础上, 结合虚拟单像素成像解卷积技术, 提出了一种大视场高分辨双边照明LSFM, 实现了视场和分辨率的同时提升. 设计和搭建了双边照明LSFM, 开展了荧光珠和转基因斑马鱼样品的三维光切片显微成像实验, 实验结果证明了系统的三维高分辨成像能力, 对于大视场、高分辨LSFM的发展和应用具有重要意义.
地球物理学、天文学和天体物理学
2022, 71 (2): 029601.
doi:10.7498/aps.71.20211305
摘要 +
位错是金属塑性变形普遍形式, 对其可动位错演化特性与规律探寻并充分利用, 将在金属强韧化提升中有着潜在基础前瞻性研究价值. 本文基于分子动力学法对金属Al塑性变形的可动位错迁演特性展开研究, 洞悉纳米压痕诱导的可动位错与孪晶界面间作用规律, 揭示出金属强化微观机制, 并分析单层孪晶界高度与多层孪晶界层间距对可动位错迁演、位错密度、硬度、黏着效应的影响. 研究发现: 高速变形下的金属非晶产生和密排六方结构的出现会协同主导Al基塑性变形, 而孪晶界会阻碍可动位错滑移、诱导可动位错缠绕及交滑移产生, 在金属承载提升中扮演了位错墙和诱导位错胞形成的微观作用. 通过在孪晶界形成钉扎位错和限制位错迁移, 在受限域形成高密度局域可动位错, 显著强化了金属硬度和韧性, 降低了卸载时黏附于探针表面的原子数. 结果表明: Al基受载会诱导上表面局部非接触区原子失配斑出现; 单层孪晶界高度离基底上表面距离减小时, 位错缠绕和交滑移作用越明显, 抗黏着效应也随之下降; 载荷持续增加会诱驱孪晶界成为位错萌生处与发射源, 并伴随塑性环的繁衍增殖.