专题:固态电池中的物理问题
2020, 69 (22): 226104.
doi:10.7498/aps.69.20201542
摘要 +
基于自动化技术和计算机技术的高通量方法可快速提供数以万计的科研数据, 对如何科学、高效的管理科研数据提出了新的挑战. 可充放的二次电池作为一种清洁高效的能源存储器件, 是电动汽车发展的关键, 也是风/光电储能的首选. 电池器件性能的提升与电池新材料的研发密切相关, 电池材料数据库的发展可在电池材料研发中引入基于大数据的新兴方法, 加速电池材料的开发. 本文从电池材料数据的获取、通用型及特定性质的电池材料数据库构建、大数据方法对电池材料研发的促进和发展电池材料数据库所面临的挑战等方面对电池材料数据库的发展和应用进行了介绍.
2020, 69 (22): 226201.
doi:10.7498/aps.69.20200713
摘要 +
固态锂电池中电极材料与固态电解质的力学性能对于电池的机械稳定性有重要影响, 如果电池内部的应力超过材料的强度, 则会在固态电池内部发生不同规模、不同组分的机械力学失效, 从而严重恶化电池的电化学性能. 本文从提高固态电池机械稳定性的角度出发, 阐述了固态电池中各组分的力学性能对固态电池机械稳定性的影响, 并分析了影响材料力学性能的因素. 另外, 固态锂电池在电池充放电过程中出现的机械力学失效问题, 包括电极材料/电解质的破裂/断裂、电极与电解质的接触损失以及由于锂枝晶引发的电池短路等, 也在综述中被讨论. 最后, 总结了目前解决固态锂电池中机械力学失效的一些常用策略, 并对未来该领域的研究方向进行了展望. 本文讨论的固态锂电池中的机械力学失效以及解决策略将有助于研究人员构筑高能量密度、长寿命、更安全的固态锂电池.
2020, 69 (22): 226401.
doi:10.7498/aps.69.20201411
摘要 +
随着计算机技术的快速发展, 计算研究在探究材料体系微结构演化方面展示出巨大的优势. 作为材料动力学的一种计算研究方法, 相场模型不仅可以避免复杂的界面追踪, 而且便于处理各类外场因素, 因而受到广泛关注. 藉此本文介绍了相场模型的理论框架以及目前主流的多元多相系相场模型: Carter模型, Steinbach模型和Chen模型, 并从相场变量的解释、耦合热力学数据库的方式、体系自由能密度的构建方式以及演化方程等方面对上述三个模型进行了系统地概括和比较. 进一步, 聚焦于相场模型在各向异性输运和相分离、弹性和塑性变形、裂纹扩展和断裂、枝晶生长机制等方面的应用, 系统展示了相场模型在描述电化学储能材料微结构演化以及改进其性能方面的巨大潜力. 最后, 从相场模型的理论改进和应用拓展两个方面, 讨论并展望了电化学储能材料相场模拟的未来发展方向和亟待解决的关键问题.
编辑推荐
2020, 69 (22): 226601.
doi:10.7498/aps.69.20201519
摘要 +
解析离子在电解质中的输运特征所表现出的微观物理图像, 对于调控离子传导行为具有重要的指导意义. 本文系统总结了离子在液态、有机聚合物和无机固态电解质中的离子输运物理图像及其影响因素, 通过分析各种输运物理模型并比较三类电解质中的离子输运机制, 提炼出勾勒离子输运物理图像的相关描述因子. 输运介质的物理形态从连续流体到柔性载体再到刚性骨架的演变过程中, 离子输运图像由各类电解质的固有属性与外部条件共同刻画, 其中介质无序性占据主导作用. 揭示电解质结构和离子电导率及输运过程等动力学行为之间的科学规律, 有利于发展基于离子输运微观物理图像的传导离子动力学性能调控方法.
封面文章
2020, 69 (22): 226801.
doi:10.7498/aps.69.20201160
摘要 +
全固态电池中科学问题的本质在于引入的固态电解质的特性及全新的固-固界面的存在. 从构-效关系出发, 固-固界面和电解质自身的结构演化与物质输运过程决定了全固态电池的性能. 随着固态电解质材料研究的不断丰富, 目前全固态电池中的问题主要集中在固-固界面,界面处的组成和结构限制了全固态电池的性能. 根据固-固界面接触的情况不同, 本文按照固-固界面物理接触、化学接触和表面改性处理这三个层次总结与讨论全固态电池中固-固界面处的结构及其物质输运. 最后从功能材料功能性起源角度讨论局域对称性与宏观复杂体系下材料性能的关联.
2020, 69 (22): 228201.
doi:10.7498/aps.69.20201227
摘要 +
全固态钠电池兼具高安全和低成本的潜在优势, 是储能领域的热点发展技术之一. 高性能固态电解质是实现全固态钠电池的关键因素. 近年来, 反钙钛矿型锂/钠离子导体因高离子电导率和灵活的结构设计, 已经受到广泛关注. 然而, 富钠反钙钛矿型Na3OBrxI1–x(0 <x< 1)的合成复杂、室温离子电导率偏低、且电化学性能研究较少. 本文通过简单合成路径得到纯相反钙钛矿型Na3OBrxI1–x, 经过100 ℃热处理之后, 其离子电导率在100 ℃可达10–3S·cm–1以上. 然而, 随着温度降低, 离子电导率会发生跳变. 通过固态核磁共振(NMR)分析, 表明该现象可能与材料复杂的结构对称性和钠位变化有关. 同时, 对Na3OBrxI1–x在全固态钠电池中的可行性进行了评估. 研究表明, Na3OBrxI1–x材料不具有“亲钠性”, 通过离子液体对界面进行修饰后, Na3OBrxI1–x展现出良好的钠金属相容性, 组装的TiS2/Na3OBr0.5I0.5/Na-Sn全电池首次放电比容量为190 mAh·g–1. 本文促进了对反钙钛矿型Na3OBrxI1–x结构和性质的理解, 并初步探究了其作为钠离子固态电解质的应用前景.
2020, 69 (22): 228202.
doi:10.7498/aps.69.20201588
摘要 +
聚氧乙烯基聚合物固态电池具有高安全性和高能量密度的特点, 极有可能成为下一代储能器件. 然而, 聚氧乙烯基电解质本身的电化学窗口窄, 极大的限制了其能量密度的进一步提升. 目前适配聚氧乙烯基电解质且长循环稳定的正负极材料较少, 这严重阻碍了聚氧乙烯基聚合物固态电池的广泛应用. 其主要问题在于电极材料与聚氧乙烯聚合物电解质之间的负极界面和正极界面都容易发生副反应, 大大地缩短了电池的循环寿命. 为了抑制这些副反应, 人们采取了相应的策略, 取得了一定的成效. 为充分理解固态电池界面处的变化, 可采用各类先进表征手段对其进行研究, 这将为下一步提高固态电池循环稳定性提供更科学的依据.
2020, 69 (22): 228203.
doi:10.7498/aps.69.20201552
摘要 +
全固态锂电池在安全性和能量密度上都表现出极大的优势, 因而在储能领域备受关注. 有机-无机复合电解质结合了刚性无机陶瓷电解质优异的室温离子电导率和柔性有机聚合物电解质良好的可弯曲性, 被认为是全固态锂电池最理想的电解质材料之一. 然而, 传统制备方法所使用的零维或一维无机填料具有团聚趋向且填料之间被聚合物相隔离, 无法形成快速而连续的锂离子传输通道, 旨在通过增加无机填料含量来提升复合电解质综合性能的方法难见成效. 三维多孔陶瓷骨架因具有连续的锂离子快速传导网络, 且其自支撑结构能够防止无机颗粒的团聚, 近年来作为无机填料被越来越广泛地应用于复合电解质中. 针对此, 本文首先详细阐释了三维多孔陶瓷骨架对复合电解质电导率提升的机理, 综述了近年来的相关研究结果, 证实了三维多孔陶瓷骨架对复合电解质电导率和热稳定性的有利作用, 然后对三维多孔陶瓷骨架不同的制备方法进行总结, 为寻找更优的合成方法提供基础, 最后探讨三维多孔陶瓷骨架的优化方向, 在已有研究的基础上提出可行的改善策略.
编辑推荐
2020, 69 (22): 228204.
doi:10.7498/aps.69.20201293
摘要 +
全固态金属锂电池的能量密度有望达到现有商业化锂离子电池的2—5倍, 且有可能从本质上解决现有液态电解质锂离子电池的安全性问题. 要想实现全固态金属锂电池这一颠覆性技术, 克服金属锂/固态电解质界面存在的副反应严重、界面接触差、锂枝晶生长等一系列挑战至关重要. 本文探讨了金属锂在有机、无机固态电解质中的沉积机理及其控制策略, 以及金属锂负极的表征手段等, 为固态锂电池的实用化研究提供了建议. 在固态电池中, 电解质与负极之间固-固接触不良、缺陷、晶界、裂纹、孔隙、尖端附近较强的电场以及固态电解质自身的电子电导都可导致金属锂沉积, 进而演变成锂枝晶. 针对这些诱因, 可以通过提高固态电解质的机械强度, 增大并改善固态电解质和负极的界面接触, 减少固态电解质内部及表面的缺陷、杂质和孔隙, 限制固态电解质内部的阴离子运动, 诱导锂的均匀沉积, 修复不均匀沉积形成的锂枝晶等方法均匀化锂沉积. 固态锂电池走向应用仍然存在诸多挑战, 需要扎实的基础研究, 有目标导向的设计思路和全面、系统、创新的综合解决方案.
2020, 69 (22): 228205.
doi:10.7498/aps.69.20201553
摘要 +
电解液在锂离子电池中不仅起到传导离子的作用, 其在电极界面所形成的电解液薄层在很大程度上决定了电极/电解液界面的性质, 进而影响电池的循环稳定性、倍率性能和安全性能. 锂离子电池得以成功商品化并广泛应用至今, 与电解液在电极表面分解形成的固体电解质界面膜息息相关. 本文简要综述界面电解液的电化学稳定性、分解规律和影响因素, 旨在抛砖引玉, 引起更多科学家对电解液及其界面性质研究的关注和重视.
2020, 69 (22): 228206.
doi:10.7498/aps.69.20201554
摘要 +
相比于有机体系锂离子电池, 全固态锂金属电池有望同时提高电池安全性和能量密度, 因而受到广泛的研究和关注. 固态电解质的电化学窗口决定了电解质在高压电池充放电过程中是否保持稳定. 目前的固态电解质, 热力学稳定电化学窗口较窄, 限制了其与高电压正极以及锂金属负极的匹配. 因而能否形成动力学稳定的界面, 决定了全固态电池是否能够持续高效工作. 本文总结归纳了固态电解质的热力学稳定窗口的实验和理论计算研究进展, 并对提高界面稳定性的实验进展进行了简述. 在此基础上, 提出构建动力学稳定性界面及防止锂枝晶的思路, 并展望了全固态电池界面构建的研究方向.
2020, 69 (22): 228501.
doi:10.7498/aps.69.20200906
摘要 +
金属锂因其高理论比容量和低电极电势, 被视为下一代高比能二次电池理想的负极材料之一. 然而, 其表面不稳定的固液界面膜及不均匀锂沉积等问题严重限制着其实际应用. 目前, 金属锂负极的研究大多采用温和的实验条件, 这对于理解负极表界面的物理化学性质和揭示锂沉积规律等基础研究具有重要意义. 但是, 超薄锂负极(< 50 μm), 低负极/正极面容量比(< 3.0), 低电解液量(< 3.0 g·Ah–1)等实用化条件是实现高比能金属锂电池(> 350 W·h·kg–1)的前提. 本文对金属锂负极在温和及实用化条件下的循环稳定性和负极表面形貌等进行比较, 分析造成差异的原因, 揭示金属锂负极在实用化条件下面临的挑战, 并提出潜在的实用化金属锂负极的研究策略, 以望促进高比能金属锂电池的发展.
2020, 69 (22): 228803.
doi:10.7498/aps.69.20201581
摘要 +
发展高能量密度和高安全性的全固态锂电池技术对于推动我国锂电池产业技术的更新换代, 强化我国在这一领域的技术优势具有重要的现实意义. 固态电解质是全固态锂电池的核心组成部分, 其中硫化物固态电解质因其高的离子电导率、较好的机械延展性以及与电极良好的界面接触等优点, 被认为是最具商业化潜力的固态电解质之一. 然而其空气稳定性较差, 与电极接触的界面存在界面副反应、锂枝晶生长及界面机械失效等缺点, 严重制约了其在高能量密度全固态锂电池中的应用. 本文首先综述硫化物固态电解质空气稳定性的研究方法及其退化机制、提高材料空气稳定性的策略与方法; 其次对其与正负极界面的相容性、稳定性及其解决策略进行了总结与分析; 最后总结归纳近年来电极/硫化物固态电解质界面的原位表征技术的研究进展, 并展望了未来硫化物固态电解质材料界面的研究重点和发展方向.
2020, 69 (22): 228804.
doi:10.7498/aps.69.20201191
摘要 +
采用固体电解质的固态锂电池具有实现高能量密度和高安全性的潜力, 在新能源汽车和可穿戴电子设备领域的应用大有可为. 石榴石型Li7La3Zr2O12(LLZO)固体电解质具有高离子电导率和对锂稳定等特点, 是当下最受人瞩目的固体电解质材料之一. 本文从物理的角度, 探讨热力学和动力学两种因素对LLZO电化学稳定性的影响, 离子界面输运机理及其在陶瓷和复合电解质中的应用. 针对固态锂电池突出的界面问题, 从界面匹配、电荷转移、体积应变、热量传递等方面, 讨论固态锂电池循环寿命和实际安全性, 给出构建理想界面的关键因素. 最后, 从电极、电解质和电池结构设计等方面分析如何构建高能量密度的固态锂电池电芯. 本文希望通过对LLZO最新理论和实验研究成果的分析总结, 阐明石榴石型固态锂电池中的关键物理问题, 为高性能固态锂电池的发展提供依据.
2020, 69 (22): 228805.
doi:10.7498/aps.69.20201218
摘要 +
全固态金属锂电池有望提高当前商用锂离子电池的安全性及能量密度, 被广泛认为是下一代电池的重要研发方向. 其中的负极-电解质界面与电池性能紧密相连. 本文将该界面存在的问题划分为静态及动态两方面, 静态问题包括化学不稳定及物理接触差, 体现在电池循环前的巨大阻抗, 动态问题包括枝晶生长及孔洞形成, 体现在电池循环过程性能的快速衰退. 本文就静态及动态问题的起因及其解决策略进行分析, 并对高性能全固态金属锂电池的设计策略作出展望.
2020, 69 (22): 228806.
doi:10.7498/aps.69.20201533
摘要 +
随着对能源存储设备输出和安全性能等方面需求的不断提升, 全固态电池展示了替代传统液态锂离子电池占据新能源市场的潜力. 石榴石型Li7La3Zr2O12固体电解质具有高离子导率且对于锂金属稳定, 是最受人瞩目的固体电解质材料之一. 但是, 固-固界面不良接触导致的巨大界面电阻以及由于锂的不均匀沉积和分解导致的锂枝晶生长等问题严重阻碍了全固态电池的发展. 本综述针对石榴石型全固态电池突出的界面问题, 详细论述了Li7La3Zr2O12表面碳酸锂问题的研究现状; 讨论了锂金属负极和固态电解质的界面浸润性以及锂枝晶生长问题, 给出了构建理想界面的关键因素; 阐述了优化正极与石榴石型固体电解质界面的具体方法以及改善界面润湿性的思路. 本文还展望了未来石榴石型全固态锂离子电池可能的发展方向, 为全固态锂离子电池的发展和应用提供了借鉴.
综述
2020, 69 (22): 224203.
doi:10.7498/aps.69.20200851
摘要 +
飞秒光学频率梳对光学频率精密测量和超快科学的发展起到了至关重要的作用, 而将其拓展至极紫外波段, 即可作为阿秒脉冲、紫外非线性光学、电子跃迁光谱探测以及量子电动力学等研究的有力工具. 极紫外飞秒光学频率梳需要通过高重复频率、高峰值功率的飞秒激光驱动高次谐波间接产生. 本文从极紫外飞秒光学频率梳的产生原理出发, 首先对其驱动源参数要求以及获取方式进行了介绍, 分别对比了啁啾脉冲放大技术、光参量啁啾脉冲放大技术、光纤放大技术和飞秒共振增强放大技术用于驱动极紫外飞秒光学频率梳产生的优缺点及适用性. 其次, 针对共线和非共线产生高次谐波的两种方式, 详细阐述了国际上常用的几种极紫外飞秒光学频率梳的耦合输出方法. 最后, 从基于飞秒共振增强腔、光参量啁啾脉冲放大器和由振荡器直接产生的极紫外飞秒光学频率梳三个角度出发, 对其研究进展进行了综述, 并对目前尚待优化的问题进行了总结.
编辑推荐
2020, 69 (22): 228102.
doi:10.7498/aps.69.20200653
摘要 +
透明导电氧化物 (transparent conductive oxides, TCOs)薄膜和透明氧化物半导体 (transparent oxide semiconductors, TOSs) 薄膜具有高透明度和良好的导电率等特点, 广泛应用于太阳能电池、平板显示、智能窗以及透明柔性电子器件等领域. 大多数TCOs和TSOs薄膜主要是以氧化铟、氧化锌和氧化锡三种材料为基础衍生来的, 其中, 氧化铟薄膜中In元素有毒、含量稀少且价格昂贵, 会造成环境污染; 氧化锌薄膜对酸或碱刻蚀液敏感, 薄膜图形化困难; 氧化锡薄膜不仅无毒、无污染、价格低廉, 还具有良好的电学性能和化学稳定性, 具有巨大的发展潜力. 目前, 薄膜的制备主要依赖于真空镀膜技术. 此类技术的缺点在于设备结构复杂且价格昂贵、能耗高、工艺复杂、生产成本高等. 相比传统真空镀膜技术, 溶胶-凝胶法具有工艺简单、成本低等优点, 受到了人们的广泛关注. 本文从TCOs和TSOs薄膜的发展现状和发展趋势出发, 先介绍了氧化锡薄膜的结构特性、导电机制、元素掺杂理论以及载流子散射机理, 然后介绍了溶胶-凝胶法原理和制备方法, 接着介绍了近些年来溶胶-凝胶法制备氧化锡基薄膜在n型透明导电薄膜、薄膜晶体管以及p型半导体薄膜中的应用和发展, 最后总结了当前存在的问题以及今后研究的方向.
编辑推荐
2020, 69 (22): 228702.
doi:10.7498/aps.69.20201039
摘要 +
多光子成像技术由于具有低侵入性、强穿透力、高空间分辨率等优点, 自问世以来便成为生物医学研究的有力工具, 在癌症病理、神经疾病及脑功能成像等方面取得了一系列较好的研究成果. 目前, 应用较为广泛的多光子成像技术是双光子激发荧光显微成像技术, 其在生物医学应用中具有较大的发展潜力. 本文详细阐述了多光子成像技术在多色成像、功能成像及成像深度等方面的生物医学应用新进展, 包括多色双光子激发荧光显微成像、双光子激发荧光寿命显微成像、双光子光纤内窥成像和三光子显微成像技术, 并简要介绍这几种多光子成像技术的原理与特性, 最后展望其未来发展前景.
总论
2020, 69 (22): 220301.
doi:10.7498/aps.69.20200838
摘要 +
本文提出了一种通过压缩驱动放置一个YIG小球的腔量子电动力学(QED)系统产生两体和三体纠缠的理论方案. 微波腔场与铁磁共振(FMR)模和静磁(MS)模的强耦合导致腔内光子、FMR模和MS模之间互相产生纠缠. 稳态情况下, 腔内光子、FMR模和MS模之间可以产生三体纠缠, 其三体纠缠的最小剩余共生纠缠度随非线性增益的增加而增大. 进一步研究发现, 该三体纠缠与MS模式的耗散系数有关, 最小剩余共生纠缠随MS模耗散系数的减小而增大. 同时还发现, 压缩驱动导致的三体纠缠对温度不敏感, 具有很好的鲁棒性. 结果表明磁-腔QED系统是研究宏观量子现象的一个强有力平台.
2020, 69 (22): 220401.
doi:10.7498/aps.69.20200488
摘要 +
为了更加准确地描述复杂非保守系统的动力学行为, 将Herglotz变分原理推广到分数阶模型, 研究分数阶非保守Lagrange系统的绝热不变量. 首先, 基于Herglotz变分问题, 导出分数阶非保守Lagrange系统的Herglotz型微分变分原理并进一步得到分数阶非保守Lagrange系统的运动微分方程; 其次, 引进无限小单参数变换, 由等时变分和非等时变分的关系, 导出了分数阶非保守Lagrange系统的Herglotz型精确不变量; 再次, 研究小扰动对分数阶Lagrange系统的影响, 建立了基于Caputo导数的分数阶Lagrange系统的绝热不变量存在的条件, 得到了该系统的Herglotz型绝热不变量; 最后, 举例说明结果的应用.
2020, 69 (22): 220501.
doi:10.7498/aps.69.20200505
摘要 +
在二维空间内, 考虑周期性边界条件, 提出了一种用时间延迟反馈分离混合手征活性粒子的新方法. 当系统引入时间延迟反馈时, 手征活性粒子动力学特征发生明显改变. 通过调节外加时间延迟反馈的强度和反馈时间可以控制逆时针旋转(counterclockwise, CCW)粒子扩散受到顺时针旋转(clockwise, CW)粒子扩散的影响程度. 当时间延迟反馈强度和反馈时间较大且系统参数取最优值时, CCW粒子加快旋转角速度, 扩散完全由粒子相互作用决定, 而CW粒子的扩散由自身参数和粒子相互作用共同决定, 在此情况下, CCW粒子容易聚集形成团簇, 而CW粒子加快扩散, 混合手征活性粒子实现分离.
电磁学、光学、声学、传热学、经典力学和流体动力学
2020, 69 (22): 224201.
doi:10.7498/aps.69.20201488
摘要 +
超材料吸波体的吸波性能会受到电磁波入射角度的影响, 角度不敏感的吸波材料设计一直是吸波材料设计的难点之一. 本文基于等效介质原理设计了一种宽入射角超材料吸波体. 超材料吸波体单元由竖直放置在理想导体(PEC)上的双面开口谐振环组成, 谐振环开口处加载集总电阻R和集总电容C, 其中电阻R用于调控超材料的等效电磁参数, 电容C用于调控超材料的谐振频率和实现单元小型化. 当TE波(横电波, 电场方向与入射面垂直的平面电磁波)照射时, 电阻R= 4000 Ω,C= 1.5 pF, 在1.59 GHz处, 本文设计的宽角超材料吸波体实现了70°内90%以上的吸波率, 当入射角度达到75°, 也仍然有85%以上的吸波率, 并且基于等效介质原理的理论分析结果和仿真结果及测量结果都基本符合; 当TM波(横磁波, 磁场方向与入射面垂直的平面电磁波)照射时, 电阻R= 1200 Ω,C= 1.5 pF, 此时需将超材料单元旋转90°, 在1.59 GHz处, 本文设计的宽角超材料吸波体实现了70°内90%以上的吸波率, 当入射角度达到75°, 也仍然有85%以上的吸波率. 测试结果基本与仿真结果符合. 此外, 当电容C发生改变而其余参数不改变时, 本文设计的超材料吸波体在新的谐振频率处仍然具有同样的宽角吸波性能, 具有宽频带的工作特性.
编辑推荐
2020, 69 (22): 224202.
doi:10.7498/aps.69.20200814
摘要 +
光学谐振腔是现代光学的基础性器件. 本文从最常见的共焦腔出发, 分别从代数解析和几何拓扑的角度解释了其稳定性随参数变化而发生突变的现象, 给出了突变的数学原因和物理原因. 从数学的角度看, 共焦腔稳定性突变是因为反三角余弦函数的函数值在传统的定义域以外由复数向实数的突变; 从几何拓扑的角度看, 根据光线在腔内的传播路径定义拓扑荷, 由于只有拓扑荷为零的腔是稳定的, 且拓扑荷的变化是量子化的, 因此共焦腔的稳定性发生突变. 并根据其突变原因设计由双非稳腔组合的耦合腔, 重新构建拓扑荷, 实现了新的稳定腔, 并且在其中发现了单腔中没有的新模式.
2020, 69 (22): 224701.
doi:10.7498/aps.69.20200491
摘要 +
微尺度系统传热具有较小的热惯性和较快的热响应, 在控制传热方面具有独到的优势. 本文利用分子动力学方法研究了纳米通道中壁面温度及壁面润湿性不同时, 静态流体和动态流体下界面热阻的变化规律. 结果表明, 在静态流体中, 壁面润湿性的增强会显著降低界面热阻, 对于温度不同的壁面, 当润湿性较弱时, 可以观察到高温壁面处的界面热阻高于低温壁面处, 反之, 当润湿性较强时, 壁面温度对界面热阻的影响较小; 对流体区域施加外力使流体流动, 结果显示外力的增加能有效提高系统的热通量, 流体温度升高. 当润湿性较弱时, 外力的增大能显著减低界面热阻, 而随着壁面润湿性增强, 外力对界面热阻的影响逐渐减小. 此外, 本文将界面热阻与壁面吸附流体分子数量相联系, 发现在静态流体中, 界面热阻值与壁面吸附流体分子的数量呈负相关; 而在动态流体中, 外力的变化对吸附分子数量的影响较小, 壁面润湿性的强弱是影响壁面吸附流体分子的主要影响因素.
凝聚物质:结构、力学和热学性质
编辑推荐
2020, 69 (22): 226101.
doi:10.7498/aps.69.20200832
摘要 +
高温高压原位中子衍射探测手段对凝聚态物理、晶体化学、地球物理以及材料科学与工程等领域的研究均有重要的意义. 本文基于中国绵阳研究堆(China Mianyang Research Reactor, CMRR)的高压中子衍射谱仪(凤凰)和1500 kN的PE型两面顶压机, 设计了一套应用于高温高压原位中子衍射实验的组装, 并利用中子衍射技术进行了实验验证及温度、压力标定. 通过对组装在高温高压下的流变控制、绝热绝缘性能提高、有效样品体积最大化等方面的优化, 获得了11.4 GPa, 1773 K高温高压条件下的中子衍射谱. 该组装的成功研制使CMRR高温高压中子衍射平台的指标得到明显提升. 同时, 对进一步提高PE型两面顶压机高温高压加载条件、扩展PE型压机在高温高压原位中子衍射领域的的应用范围, 具有重要的意义.
2020, 69 (22): 226102.
doi:10.7498/aps.69.20200781
摘要 +
化学气相沉积法是大面积、高质量石墨烯沉积制备实践中的重要方法. 本文采用分子动力学仿真技术, 模拟了利用化学气相沉积法在铜(111)晶面制备石墨烯的过程, 研究揭示了石墨烯在铜(111)晶面上的微观生长机理. 研究结果表明: 石墨烯的沉积生长可描述为第一阶段的二元碳、三元碳和碳链形成阶段, 以及第二阶段的碳环生成以及缺陷愈合阶段. 研究发现沉积过程中的高温能够给碳原子提供足够的能量, 使其越过两个阶段之间的能量障碍, 实现石墨烯的沉积生长. 探究了温度与碳沉积速率对石墨烯的影响, 发现温度的影响主要体现在石墨烯的缺陷以及表面平整度两个方面. 在1300 K的温度下生长的石墨烯缺陷较少, 平整度最好. 碳沉积速率会影响石墨烯生长过程中出现的缺陷, 仿真获得了石墨烯最佳表面平整度时的碳沉积速率为5 ps–1. 本文的研究结果对铜基底表面化学气相沉积法制备石墨烯的实际应用具有指导意义.
2020, 69 (22): 226103.
doi:10.7498/aps.69.20200553
摘要 +
CdZnTe晶体内的空间电荷积累效应是影响高通量脉冲型探测器性能的关键因素.为了探索CdZnTe晶体中深能级缺陷对空间电荷分布及器件性能的影响规律, 本文采用Silvaco TCAD软件仿真了CdZnTe晶体内包含位置为Ev+ 0.86 eV, 浓度为1 × 1012cm–3的深施主能级缺陷
$ \rm Te_{Cd}^{++} $
时, 其空间电荷分布及内电场分布特性. 仿真结果表明, 随着外加偏压的增加, Au/CdZnTe/Au的能带倾斜加剧, 使得晶体内深能级电离度不断增加, 空间电荷浓度增加, 电场分布死区减小, 从而有利于载流子收集. 此外, 保证CdZnTe晶体高阻的前提下, 降低深能级缺陷(Ev+ 0.86 eV)浓度可使内电场死区减小. 深能级缺陷位置为Ev+ 0.8 eV, 亦可以减少阴极附近的空间电荷浓度, 使得电场分布更加平坦, 死区减小, 从而有效地提升载流子的收集效率.
2020, 69 (22): 226301.
doi:10.7498/aps.69.20200839
摘要 +
对钙钛矿锰氧化物的磁性进行调控在科学上具有重要意义, 在自旋电子学领域更是有紧迫需求. 利用外延应变和铁电极化双重调控超晶格材料的磁性不但更加接近体系的真实状态, 而且能诱导出丰富的物理性质. 本文采用第一性原理计算, 系统地研究了外延应变和铁电极化对LaMnO3/BaTiO3超晶格磁性的鲁棒控制. 通过精确调控Mn原子磁矩的大小和方向, 实现了铁磁
$\leftrightarrow$
反铁磁
$\leftrightarrow$
亚铁磁之间的可逆转变, 同时产生了强烈的磁电耦合效应. 除此之外, 本文在超晶格中实现了铁电极化和金属性共存. 通过分析Jahn-Teller效应, 氧八面体旋转、倾斜以及体系内部电子转移对磁性的影响, 揭示了磁性调控的物理机制. 研究结果不但对系统地了解LaMnO3体系的磁性变化具有重要意义, 而且可以为设计基于钙钛矿锰氧化物的自旋电子器件提供理论指导.
凝聚物质:电子结构、电学、磁学和光学性质
2020, 69 (22): 227801.
doi:10.7498/aps.69.20201144
摘要 +
有限投影条件下激光吸收光谱二维测量光路优化对燃烧场重建结果具有重要影响. 针对基于Tikhonov正则化的病态投影方程组求解问题, 提出了基于正则化参数矩阵的光路设计与二维重建方法. 建立了基于Tikhonov正则化参数矩阵的光路设计目标函数, 利用遗传算法获得最佳光路布置方式, 通过匹配光路与正则化参数分布对测量区域内正则化权重进行调整以减小重建误差. 采用7185.6 cm–1波段H2O特征谱线并结合20条投影光路对10 × 10离散化测量区域内双峰高斯分布模型进行了重建, 对5种光路布置方式重建结果进行了对比分析, 结果表明基于Tikhonov正则化参数矩阵的光路布置方式重建结果最佳. 光路数量越少, Tikhonov正则化参数矩阵作用效果越明显. 开展了针对气液两相脉冲爆轰发动机外流场的模拟测量研究, 验证了本文光路布置方式在复杂多变流场环境下重建效果. 在实验室内针对小型燃气炉进行了实验测试, 重建燃烧场峰值位置和幅值与实际情况吻合. 研究结果对于推动激光吸收光谱二维重建技术在发动机诊断及燃烧效率提升方面的应用具有重要意义.
物理学交叉学科及有关科学技术领域
2020, 69 (22): 228101.
doi:10.7498/aps.69.20200891
摘要 +
由于受电子器件尺寸和加工技术的限制, 在太赫兹波段很少有主动调控的编码超表面. 为了提高太赫兹编码超表面的灵活性, 本文选择相变材料二氧化钒进行主动调控. 分析了二氧化钒相变前(绝缘态)和相变后(金属态)两种态对单元结构幅值和相位的影响, 设计出一种能够主动调控的基于二氧化钒的1 bit太赫兹编码超表面, 该结构由二氧化钒、聚酰亚胺和铝构成, 不仅可以实现编码超表面调节电磁波波束的基本功能, 而且对于同一编码序列还能通过温控二氧化钒在1.1 THz实现两种远场波束的切换, 同样对于同一编码序列也能通过温控在1.1 THz实现两种近场聚焦焦点的切换. 这种基于二氧化钒对相位的影响而设计的编码超表面为灵活调控太赫兹波提供一种新的途径, 将在太赫兹传输、成像和通信等方面有着重大的应用前景.
2020, 69 (22): 228103.
doi:10.7498/aps.69.20200810
摘要 +
氧化镓(Ga2O3)薄膜在功率器件以及紫外探测等领域中具有重要的应用潜力, 而实现高质量薄膜制备则是其中的关键. 本文在蓝宝石衬底上物理溅射生长外延Ga2O3层, 因采用引入籽晶层的方法提供了人为成核点而使得外延层结晶质量获得明显改善. 实验发现该外延层薄膜的生长中随着功率增加, 晶粒团聚到一定尺寸后出现裂解现象. 这一物理机制归因于大功率下溅射粒子在生长晶面上扩散携带的能量过大导致粒子碰撞次数增多. 文中生长的外延层为
$ \left( {\bar 2\;0\;1} \right)$
晶面取向的β型Ga2O3薄膜, 厚度在202.4—292.3 nm之间, 薄膜在450—800 nm范围可见光波段的透射率约为90%, 吸收边随着功率的增加先蓝移后红移, 带隙约为4.81—4.96 eV. 光致发光光谱分析表明, 该外延层薄膜在460 nm处产生蓝色发光. 本文发现溅射功率为160 W时引入籽晶层生长的β-Ga2O3薄膜具有最佳的结晶质量, 这一方法将为高质量β-Ga2O3薄膜的可控生长提供有益参考.
2020, 69 (22): 228701.
doi:10.7498/aps.69.20200753
摘要 +
图像质量评价(IQA)方法需要考虑如何从主观视觉度量结果出发, 设计出符合该结果的客观图像质量评价方法, 应用到相关实际问题中. 本文从视觉感知特性出发, 量化色度和结构特征信息, 提出了基于色貌和梯度两个图像特征的图像质量客观评价模型. 两个色貌新指标(vividness和depth)是色度特征信息提取算子; 梯度算子用来提取结构特征信息. 其中, vividness相似图一方面作为特征提取算子计算失真图像局部质量分数, 另一方面作为图像全局权重系数反应每个像素的重要程度. 为了量化所提模型的主要参数, 根据通用模型性能评价指标, 使用Taguchi实验设计方法进行优化. 为了验证该模型的性能, 使用4个常用图像质量数据库中的94幅参考图像和4830幅失真图像进行对比测试, 从预测精度、计算复杂度和泛化性进行分析. 结果表明, 所提模型的精度PLCC值在4给数据库中最低实现0.8455, 最高可以达到0.9640, 综合性能优于10个典型和近期发表的图像质量评估(IQA)模型. 研究结果表明, 所提模型是有效的、可行的, 是一个性能优异的IQA模型.
2020, 69 (22): 228801.
doi:10.7498/aps.69.20200821
摘要 +
本文提出了一种新型的三壁碳纳米管螺旋振荡器, 通过对内管施加轴向激励和中管施加旋转激励的方式, 来同时获得内管和中管的螺旋信号输出. 采用分子动力学方法研究了该振荡器在拉转耦合下的振荡行为. 在模拟过程中, 固定的外管充当振荡器定子的作用, 内管和中管在分别施加一定的初始激励后保持自由振荡. 模拟结果表明, 在内管拉出距离一定的情况下, 内管的自激发旋转频率随着中管初始旋转激励频率的增加而增加, 且最终趋于一个稍低于旋转激励的稳定值. 当施加的初始旋转频率在400 GHz以内时, 内管达到稳定的旋转频率
$ {\omega _{{\rm{ I}}}}$
与旋转激励频率
$ {\omega _{{\rm{ M 0}}}}$
的关系为
$ {\omega _{{\rm{ I}}}} = 46{{\rm{e}}^{0.0045{\omega _{{\rm{M 0}}}}}}$
. 尽管提高初始旋转激励频率可以提高内管的旋转频率, 但随着中管初始旋转频率的增加内管的轴向性能下降, 不稳定振荡加剧. 同时中管轴向振荡的稳定性与施加在其上面的初始旋转激励的频率有关, 过高的初始旋转频率不仅会加大非轴向摆动距离, 导致轴向振荡性能下降, 而且旋转损耗比也将随着初始旋转频率的增加而增加. 因此, 合理的控制初始旋转频率的幅值是设计低损耗三壁碳纳米管螺旋振荡器的关键.
2020, 69 (22): 228802.
doi:10.7498/aps.69.20200557
摘要 +
本文为研究1 MeV电子辐照倒置四结(IMM4J)太阳电池InGaAs(1.0 eV)和 InGaAs(0.7 eV)关键子电池的退火效应, 将辐照后的两种子电池在60—180 ℃温度范围累计退火180 min, 并对不同退火温度、退火时间下的两种子电池进行了光IV测试、暗IV测试和光谱响应测试. 实验结果表明两种子电池的开路电压Voc、短路电流Isc和最大输出功率Pmax随着退火时间的延长逐渐恢复, 温度越高, 恢复程度越大. 在相同的退火条件下, InGaAs(1.0 eV)子电池的恢复程度比InGaAs(0.7 eV)子电池小. 本文通过对暗特性曲线进行双指数模型拟合, 得到不同退火条件下两种子电池的串联电阻Rs、并联电阻Rsh、扩散电流Is1、复合电流Is2. 结果表明在退火过程中两种子电池的Rsh逐渐增大,Rs,Is1和Is2逐渐减小. 温度越高, 退火时间越长, 恢复程度越大. 在退火60 min后两种子电池的Voc,Isc和Pmax恢复程度均可达到整体恢复程度的85%以上. InGaAs(1.0 eV)子电池的Is1和Is2的恢复程度远大于InGaAs(0.7 eV). 本文建立了短路电流密度Jsc和缺陷浓度N的等效模型, 以此计算得到InGaAs(1.0 eV)和InGaAs(0.7 eV)两种子电池的热退火激活能分别为0.38 eV和0.26 eV.