搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

葛先辉
cstr: 32037.14.aps.74.20241751

Zeno’s paradox and black hole information loss problem

Ge Xianhui
cstr: 32037.14.aps.74.20241751
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子力学中量子态演化的幺正性同广义相对论中的绝对性概念之间的冲突, 是量子引力理论必须面对的关键难题. 本文首先回顾了芝诺悖论的主要内容, 以及牛顿力学中“极限”和“速度”概念在解决这一悖论中所起的关键作用. 以此为类比, 研究了量子纠缠冯·诺伊曼熵作为Rényi熵的极限, 在黑洞蒸发过程中可被视为状态量, 而模哈密顿量可被视为守恒量. 由此出发, 详细探讨了黑洞蒸发过程中引力路径积分中的霍金鞍点和副本虫洞鞍点对副本参数n的依赖. 进一步指出副本技巧与量子不可克隆定理之间的关系, 指出需要引入一个新的物理量——n依赖的相对熵来描述黑洞蒸发过程中状态的变化. 在黑洞蒸发过程中, 系统从霍金鞍点过渡到虫洞鞍点时,其副本参数n依赖的相对熵呈现增长趋势. 这进一步揭示了在模空间中, 黑洞从霍金鞍点向副本虫洞鞍点的演化过程具有不可逆性.
    The black hole information paradox—a fundamental conflict between quantum unitarity and semi-classical gravity—remains unresolved within the framework of quantum gravity. This work builds a conceptual bridge between this modern dilemma and Zeno’s ancient paradox of motion, emphasizing that they all rely on limit processes to reconcile infinite divisibility with finite physical outcomes. Although previous researches have established information conservation in black hole evaporation by copying wormholes, this study transcends mere unitarity verification to answer a deeper question: How do we quantify the statistical evolution and inherent irreversibility of Hawking radiation? Methods : i) Gravitational path integral formalism : We compute Rényi entropies $ S_n = \dfrac{1}{1-n} \ln \text{Tr}(\rho^n) $ by analytic continuation $( n \to 1 )$, incorporating both disconnected geometries (Hawking saddles) and connected replica wormhole saddles. ii) JT gravity model : A two-dimensional Jackiw-Teitelboim (JT) gravity coupled to a conformal bath is analyzed, with End-of-the-World (EOW) branes modeling early Hawking radiation states. iii) Modular thermodynamics : Modular entropy $ S_m $ and entanglement capacity $ C_n $ are defined as:           $ S_m = \log\text{Tr}(\rho^n) - n\partial_n\log\text{Tr}(\rho^n), \quad C_n = n^2\partial_n^2\log\text{Tr}(\rho^n),$mirroring thermodynamic entropy and heat capacity. Key results : i) Page curve restoration : The von Neumann entropy transitions from linear growth (Hawking phase) to zero (wormhole-dominated phase) at the Page time: $ t_{\text{Page}} \propto {S_{\text{BH}}}/({n\kappa c}), \quad S_{\text{BH}} = {A}/({4G_N}), $indicating faster entropy reduction for higher n. ii) Replica wormhole mechanism : The gravitational path integral reveals a topological transition:           $ \text{Tr}(\rho^n) \approx \dfrac{kZ_1^n + k^n Z_n}{(kZ_1)^n} \quad \Rightarrow \quad \text{Dominance shift at } k \sim {\mathrm{e}}^{S_0}$.Quantum non-cloning constraints: A reversibility paradox arises: while n-copies -copies of a known state allow full reconstruction, the non-cloning theorem forbids replication of unknown states. This necessitates the a priori existence of multiple replicas to ensure consistency. iii) Connection to Zeno’s paradox : The resolution of Zeno’s paradox through Newtonian limits $( v = \lim\limits_{\Delta t \to 0} \Delta x / \Delta t $) parall) parallels the replica trick’s role in black hole physics: iv) Infinite-to-finite mapping : Both employ limit operations to compress divergent processes (infinite steps or entropy growth) into finite observables. Discrete vs. continuous : Challenge classical spacetime continuity, hinting at holographic or discrete quantum spacetime. Irreversibility and generalized second law : The relative entropy $ S(\rho \| \sigma) $, defined as:               $ S(\rho \| \sigma) = \text{Tr}(\rho \log \rho) - \text{Tr}(\rho \log \sigma),$monotonically increases during the Hawking-to-wormhole transition, establishing statistical irreversibility in modular space. This generalized second law persists despite microscopic unitarity, analogous to thermodynamic irreversibility in closed systems with the formula: $ \left(S_n-S_{\rho}\right)-n\left(\left\langle H\right\rangle_n-\left\langle H\right\rangle_{\rho}\right)\geqslant 0 $. Conclusion :Our results address the black hole information paradox and the irreversible problem through three pillars: i) Unitarity : Replica wormholes enforce unitarity via non-perturbative spacetime topology changes. ii) Modular thermodynamics : A framework linking entanglement entropy, relative entropy, and irreversibility. iii) Replica priority principle : Multiple radiation replicas exist a priori, circumventing quantum cloning constraints.This work transcends mere information conservation, advancing into the second layer of black hole physics: Characterizing the irreversible evolution of Hawking radiation in modular space.
      通信作者: 葛先辉, gexh@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275166, 12311540141)资助的课题.
      Corresponding author: Ge Xianhui, gexh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275166, 12311540141).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

  • 统计力学量 表达式 Modular类比 表达式
    逆温度 β 副本参数 n
    哈密顿量 H 模哈密顿量 ${\cal{H}}=-\log {\boldsymbol{\rho}}_A$
    配分函数 $Z(\beta)={\mathrm{Tr}}({\mathrm{e}}^{-\beta H})$ 副本配分函数 $Z_n(n)={\mathrm{Tr}}({\mathrm{e}}^{-n {\cal{H}}_A})$
    自由能 $F(\beta)=-\dfrac{1}{\beta}\log {\mathrm{Tr}}[{\mathrm{e}}^{-\beta H}]$ 副本自由能 $F(n)= -\dfrac{1}{n}\log [{\mathrm{Tr}}_A {\boldsymbol{\rho}}^n_{A}]$
    能量 $E(\beta)=\langle H \rangle=-\partial_{\beta} \log[{\mathrm{Tr\, e}}^{-\beta H}]$ 副本能量 $E(n)=-\partial_n \log [{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    热力学熵 $S(\beta)=\log[{\mathrm{Tr \,e}}^{-\beta H}]-\beta \partial_{\beta}\log[{\mathrm{Tr \,e}}^{-\beta H}]$ 模熵 $S_m= \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]-n \partial_n \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    热容量 $C(\beta)=\beta^2 \partial^2_{\beta}\log[{\mathrm{Tr \,e}}^{-\beta H}]$ 纠缠容量 $C_n=n^2 \partial^2_n \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

  • [1] 戴伟鹏, 贺衎, 侯晋川. 基于Rényi-α熵的参数化纠缠度量. 必威体育下载 , 2024, 73(4): 040303. doi: 10.7498/aps.73.20231503
    [2] 李俊青, 黄丽, 崔世杰, 王银珠. 量子态在两体和k体下基于min相对熵的量子关联测度. 必威体育下载 , 2023, 72(1): 010302. doi: 10.7498/aps.72.20221293
    [3] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析. 必威体育下载 , 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [4] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究. 必威体育下载 , 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [5] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析. 必威体育下载 , 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [6] 许元男, 赵远, 刘丽萍, 张宇, 孙秀冬. 基于伪Wigner-Ville分布和Rényi熵的显著图目标检测. 必威体育下载 , 2010, 59(2): 980-988. doi: 10.7498/aps.59.980
    [7] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵. 必威体育下载 , 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [8] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 必威体育下载 , 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [9] 王波波. 环面黑洞背景下量子场的熵. 必威体育下载 , 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [10] 张丽春, 赵 仁. Sen黑洞熵与能斯特定理. 必威体育下载 , 2004, 53(2): 362-366. doi: 10.7498/aps.53.362
    [11] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 必威体育下载 , 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [12] 赵仁, 张丽春. Kim黑洞熵与能斯特定理. 必威体育下载 , 2001, 50(4): 593-596. doi: 10.7498/aps.50.593
    [13] 林 海. 满足热力学第三定律的修正的黑洞的熵公式. 必威体育下载 , 2000, 49(8): 1413-1415. doi: 10.7498/aps.49.1413
    [14] 刘文彪, 朱建阳, 赵峥. Nernst定理与Reissner-Nordstrom黑洞Dirac场的熵. 必威体育下载 , 2000, 49(3): 581-585. doi: 10.7498/aps.49.581
    [15] 赵 峥, 朱建阳. 能斯特定理与黑洞的普朗克绝对熵. 必威体育下载 , 1999, 48(8): 1558-1564. doi: 10.7498/aps.48.1558
    [16] 缪炎刚. 一种自对偶理论的规范不变形式及其量子化. 必威体育下载 , 1993, 42(4): 536-543. doi: 10.7498/aps.42.536
    [17] 欧发. 最小熵产生定理与光学被动腔. 必威体育下载 , 1990, 39(7): 40-47. doi: 10.7498/aps.39.40-2
    [18] 李如生. 最小熵产生定理和定态的稳定性. 必威体育下载 , 1985, 34(7): 956-959. doi: 10.7498/aps.34.956
    [19] 陈式刚. Glansdorff-Prigogine判据与最小熵产生定理. 必威体育下载 , 1980, 29(10): 1315-1322. doi: 10.7498/aps.29.1315
    [20] 侯伯宇, 段一士, 葛墨林. 不可易规范场的对偶荷. 必威体育下载 , 1976, 25(6): 514-520. doi: 10.7498/aps.25.514
计量
  • 文章访问数:  471
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-22
  • 修回日期:  2025-01-26
  • 上网日期:  2025-02-24

返回文章
返回
Baidu
map