搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

张永慧, 史庭云, 唐丽艳
cstr: 32037.14.aps.74.20241728

Applications of B-spline method in precise calculation of structure of few-electron atoms

ZHANG Yonghui, SHI Tingyun, TANG Liyan
cstr: 32037.14.aps.74.20241728
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 少电子原子的精密光谱在基本物理理论验证、精细结构常数精确测定以及原子核性质深入探索等领域具有重要的应用价值. 随着精密测量物理学的快速发展, 人们对原子结构数据的需求已从最初的存在性确认, 转变为对高度准确性和精确性的持续追求. 为了满足精密光谱实验对高精度结构性质数据的迫切需求, 我们自主发展了一系列基于B-样条基组的高精度理论方法, 并将其成功应用于少电子原子的能级结构与外场响应性质的理论研究中. 具体而言, 实现了氦原子和类氦离子能谱的高精度确定, 为相关实验研究提供理论支撑; 实现了幻零波长的高精度理论预言, 为量子电动力学理论检验开辟了新方向; 提出了有效抑制光频移的理论方案, 为氦原子高精度光谱实验的开展提供了重要支持. 展望未来, 基于B-样条基组的高精度理论方法有望在量子态操控、核结构性质精确测定、超冷分子形成以及新物理探索等前沿领域得到广泛应用, 从而推动国内外精密测量物理领域的蓬勃发展.
    The precise spectra of few-electron atoms plays a pivotal role in advancing fundamental physics, including the verification of quantum electrodynamics (QED) theory, the determination of the fine-structure constants, and the exploration of nuclear properties. With the rapid development of precision measurement techniques, the demand for atomic structure data has evolved from simply confirming existence to pursuing unprecedented accuracy. To meet the growing needs for precision spectroscopy experiments, we develop a series of high-precision theoretical methods based on B-spline basis sets, such as the non-relativistic configuration interaction (B-NRCI) method, the correlated B-spline basis functions (C-BSBFs) method, and the relativistic configuration interaction (B-RCI) method. These methods use the unique properties of B-spline functions, such as locality, completeness, and numerical stability, to accurately solve the Schrödinger and Dirac equations for few-electron atoms. Our methods yield significant results, particularly for helium and helium-like ions. Using these methods, we obtain accurate energies, polarizabilities, tune-out wavelengths, and magic wavelengths. Specifically, we achieve high-precision measurements of the energy spectra of helium, providing vital theoretical support for conducting related experimental researches. Additionally, we make high-precision theoretical predictions of tune-out wavelengths, paving the way for new tests of QED theory. Furthermore, we propose effective theoretical schemes to suppress Stark shifts, thereby facilitating high-precision spectroscopy experiments of helium. The B-spline-basis methods reviewed in this paper prove exceptionally effective in high-precision calculations for few-electron atoms. These methods not only provide crucial theoretical support for precision spectroscopy experiments but also pave the new way for testing QED. Their ability to handle large-scale configuration interactions and incorporate relativistic and QED corrections makes them versatile tools for advancing atomic physics research. In the future, the high-precision theoretical methods based on B-spline basis sets are expected to be extended to cutting-edge fields, such as quantum state manipulation, determination of nuclear structure properties, formation of ultracold molecules, and exploration of new physics, thus continuously promoting the progress of precision measurement physics.
      通信作者: 唐丽艳, lytang@apm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12174402, 12393821, 12274423, 12274417)、中国科学院先导B项目(批准号: XDB0920100, XDB0920101)和中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-055)资助的课题.
      Corresponding author: TANG Liyan, lytang@apm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174402, 12393821, 12274423, 12274417), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100, XDB0920101), and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences (Grant No. YSBR-055).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

  • $ \ell_{{\mathrm{max}}} $ B-NRCI Method [56] $ \ell_{{\mathrm{max}}} $ C-BSBFs Method [52]
    60 –2.903724240750 1 –2.9037242683
    65 –2.903724262547 2 –2.90372437687
    70 –2.903724278413 3 –2.90372437696
    75 –2.903724290199 4 –2.903724376999
    80 –2.903724299061
    Ref. [13] –2.90372437703411960
    下载: 导出CSV

    $ \gamma_0 $ $ t_1 $ $ E_{{\mathrm{max}}} $ $ \beta(1 {\mathrm{s}}) $
    0.005 4.10×10–1 5.76×103 2.258
    0.025 2.41×10–2 1.59×106 2.2890
    0.035 4.59×10–3 4.32×107 2.29061
    0.045 8.06×10–4 1.38×109 2.290915
    0.065 2.17×10–5 1.83×1013 2.2909796
    0.075 3.43×10–7 7.23×1015 2.29098109
    0.085 5.32×10–7 2.96×1018 2.290981330
    0.105 1.23×10–9 5.38×1020 2.2909813741
    0.115 1.84×10–10 2.36×1022 2.29098137505
    0.125 2.74×10–10 1.05×1023 2.29098137518
    0.135 4.04×10–11 4.75×1023 2.2909813752020
    0.145 5.94×10–12 2.16×1025 2.29098137520502
    0.165 1.26×10–13 4.65×1028 2.290981375205541
    0.175 1.83×10–14 2.17×1030 2.2909813752055506
    0.185 2.65×10–15 1.03×1032 2.29098137520555206
    0.195 3.82×10–16 4.86×1033 2.29098137520555227
    0.205 5.49×10–17 2.32×1035 2.290981375205552296
    0.225 1.13×10–18 5.35×1038 2.29098137520555230124
    0.235 1.60×10–19 6.31×1039 2.2909813752055523013355
    下载: 导出CSV

    State B-NRCI[65] C-BSBFs[55] Integration method[73]
    $ 1\, ^1 {\mathrm{S}} $ 4.37034(2) 4.37016022(5) 4.3701602230703(3)
    4.37014(2) 4.3701601(1)
    $ 2\, ^1 {\mathrm{S}} $ 4.36643(1) 4.36641271(1) 4.366412726417(1)
    4.366412(1) 4.3664127(1)
    $ 3\, ^1 {\mathrm{S}} $ 4.369170(1) 4.36916480(6) 4.369164860824(2)
    4.3691643(2) 4.3691648(1)
    $ 4\, ^1 {\mathrm{S}} $ 4.369893(1) 4.36989065(5) 4.369890632356(3)
    4.3698903(5) 4.3698906(1)
    $ 5\, ^1 {\mathrm{S }}$ 4.370152(3) 4.3701520(1) 4.370151796310(4)
    4.3701511(2) 4.3701519(1)
    $ 6\, ^1 {\mathrm{S }}$ 4.37027(1) 4.370267(1) 4.370266974319(5)
    4.370266(2) 4.370267(1)
    $ 7\, ^1{\mathrm{ S}} $ 4.37033(1) 4.370326(1) 4.370325261772(5)
    4.37033(1) 4.370326(1)
    下载: 导出CSV

    C-BSBFs [54] Ref. [78]
    NR 1.383809986408(2) 1.383809986408(1)
    Rel. 1.38372953306(7) 1.3837295330(1)
    Total 1.38376080(24) 1.38376077(14)
    下载: 导出CSV

    n $ \alpha_1(n\, ^1 {\mathrm{S}}_0) $ $ \alpha_1^{\mathrm{S}}(n\, ^3 {\mathrm{S}}_1) $ $ \alpha_1^{\mathrm{T}}(n\, ^3 {\mathrm{S}}_1) $
    2 800.52195(14) 315.728536(48) 0.002764488(2)/0.000726892(6)
    3 16890.5275(28) 7940.5494(13) 0.09715509(3)/–0.005470(2)
    4 135875.295(23) 68677.988(11) 0.9558(3)/–0.1189(2)
    5 669694.55(11) 351945.328(60) 5.2676(2)/–0.7829(3)
    6 2443625.15(40) 1315529.52(23) 20.654(3)/–3.291(2)
    7 7269026.8(1.2) 3977532.95(69) 64.62(3)/–10.65(3)
    下载: 导出CSV

    Reference Method $ \alpha_1^{\mathrm{S}}(\omega)-2\alpha_1^{\mathrm{T}}(\omega) $ $ \alpha_1^{\mathrm{S}}(\omega)+\alpha_1^{\mathrm{T}}(\omega) $ $ \alpha_1^{\mathrm{S}}(\omega)-\tfrac{1}{2}\alpha_1^{\mathrm{T}}(\omega) $
    Ref. [6] Hybrid model 413.02(9)
    Ref. [89] Expt. 413.0938(9stat)(20syst)
    Ref. [47] RCI 413.080 1(4) 413.085 9(4)
    Ref. [49] RCI+NRQED 413.084 26(4) 413.090 15(4)
    Ref. [15] Expt. 413.087 08(15)
    Ref. [15] NRQED 413.087 179(6)
    Ref. [90] RCIRP 413.084 28(5) 413.090 17(3) 413.087 23(3)
    下载: 导出CSV

    Isotopes Theory Experiment
    4He 319.8153(6) nm [48] 319.81592(15)nm [96]
    3He 319.8302(7) nm [48] 319.83080(15)nm [97]
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

  • [1] 高克林. 少电子原子分子精密谱编者按. 必威体育下载 , 2024, 73(20): 200101. doi: 10.7498/aps.73.200101
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算. 必威体育下载 , 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量. 必威体育下载 , 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [4] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 必威体育下载 , 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [5] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 必威体育下载 , 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 必威体育下载 , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 必威体育下载 , 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 必威体育下载 , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 必威体育下载 , 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [10] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 必威体育下载 , 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [11] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 必威体育下载 , 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 必威体育下载 , 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [13] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 必威体育下载 , 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [14] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 必威体育下载 , 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [15] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 必威体育下载 , 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [16] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究. 必威体育下载 , 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [17] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 必威体育下载 , 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [18] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率. 必威体育下载 , 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [19] 申三国, 范希庆. Si中B-空位复合缺陷的电子结构. 必威体育下载 , 1991, 40(4): 616-624. doi: 10.7498/aps.40.616
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 必威体育下载 , 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  428
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-15
  • 修回日期:  2025-02-07
  • 上网日期:  2025-02-21

返回文章
返回
Baidu
map