搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

赵立强, 李宇晨, 尹浩川, 张晟昱, 吴泽, 彭新华
cstr: 32037.14.aps.74.20241709

Quantum control based on solid-state nuclear magnetic resonance and its applications

ZHAO Liqiang, LI Yuchen, YIN Haochuan, ZHANG Shengyu, WU Ze, PENG Xinhua
cstr: 32037.14.aps.74.20241709
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 作为一种物质表征的重要技术手段, 固态核磁共振已经在物理学、材料科学、化学、生物学等多个学科领域得到广泛的应用. 近年来, 得益于固态核磁共振体系中丰富的多体相互作用和多样的脉冲控制手段, 该技术逐渐在前沿的量子科技中展现出重要的研究价值和应用潜力. 本文系统性地介绍了固态核磁共振体系的研究对象和理论基础, 包括该系统中重要的核自旋相互作用机理及其哈密顿量形式, 列举了动力学解耦、魔角旋转等典型的固态核自旋动力学调控手段. 此外, 我们重点展示了近年来在固态核磁共振量子控制方面取得的前沿进展, 包括核自旋极化增强技术、弗洛凯哈密顿量的调控技术等. 最后, 我们结合一些重要的研究工作阐述了固态核磁共振量子控制技术在量子模拟领域中的应用.
    Solid-state nuclear magnetic resonance (NMR) has emerged as an important technique for material characterization, finding extensive applications across a diverse range of disciplines including physics, materials science, chemistry, and biology. Its utility stems from the ability to probe the local atomic environments and molecular dynamics within solid materials, which provides information on the composition of the material. In recent years, the scope of solid-state NMR has expanded into the realm of quantum information science and technology, where its abundant many-body interactions pulse control methodologies make it have significant research value and application potential. This paper offers a comprehensive overview of the research objects and theoretical underpinnings of solid-state NMR, delving into the critical nuclear spin interaction mechanisms and their corresponding Hamiltonian forms. These interactions, which include dipolar coupling, chemical shift anisotropy, and quadrupolar interactions, are fundamental to the interpretation of NMR spectra and the understanding of material properties at the atomic level. Moreover, the paper introduces typical dynamical control methods employed in the manipulation of solid-state nuclear spins. Techniques such as dynamical decoupling, which mitigates the effects of spin-spin interactions to extend coherence times, and magic-angle spinning, which averages out anisotropic interactions to yield high-resolution spectra. These methods are essential for enhancing the sensitivity and resolution of NMR experiments, enabling the extraction of detailed structural and dynamic information from complex materials. Then we introduce some recent advancements in quantum control based on solid-state NMR, such as nuclear spin polarization enhancement techniques, which include dynamic nuclear polarization (DNP) and cross polarization (CP), significantly boost the sensitivity of NMR measurements. Additionally, the control techniques of Floquet average Hamiltonians are mentioned, showcasing their role in the precise manipulation of quantum states and the realization of quantum dynamics. Finally, the paper presents a series of seminal research works that illustrate the application of solid-state NMR quantum control technologies in the field of quantum simulation. These studies demonstrate how solid-state NMR can be leveraged to simulate and investigate quantum many-body systems, providing valuable insights into quantum phase transitions, entanglement dynamics, and other phenomena relevant to quantum information science. By bridging the gap between fundamental research and practical applications, solid-state NMR continues to play a crucial role in advancing our understanding of quantum materials and technologies.
      通信作者: 吴泽, wuze@ustc.edu.cn ; 彭新华, xhpeng@ustc.edu.cn
    • 基金项目: 科技创新2030―“量子通信与量子计算机”重大项目(批准号: 2021ZD0303205)、国家自然科学基金(批准号: 12261160569)、国家自然科学基金/香港研资局合作研究计划(批准号: CUHK401/22)、新基石科学基金、中国博士后科学基金(批准号: 2023M733416)和中央高校基本科研业务费专项资金(批准号: WK2030000084)资助的课题.
      Corresponding author: WU Ze, wuze@ustc.edu.cn ; PENG Xinhua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303205), the National Natural Science Foundation of China (Grant No. 12261160569), the National Natural Science Foundation of China/Hong Kong RGC Collaborative Research Scheme (Grant No. CUHK401/22), the New Cornerstone Science Foundation, the China Postdoctoral Science Foundation (Grant No. 2023M733416), and the Fundamental Research Funds for the Central Universities (Grant No. WK2030000084).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

  • $ \hat{H}_{\rm tar} $ C 单位(π), $ n=1, 2, 3, 4 $
    $ \displaystyle\sum_{i<j}J_{ij}[2\hat{I}^i_z\hat{I}^j_z-\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=1, \gamma_n= {(n-1)}/{2} $
    –0.5 $ \beta_{n} = {1}/{2}, \gamma_n = {(n-1)}/{2} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+4(-1)^n}]/{4} $
    –1 $ \beta_{n}=0.304, \gamma_n= [{3+4(-1)^n}]/{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n= [{3(-1)^n}]/{4} $
    –1/3 $ \beta_{n}=0.304, \gamma_n= {(-1)^n}/{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_y+\hat{I}^i_y\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{4} $
    –1/3 $ \beta_{n}=0.304, \gamma_n= [{2+(-1)^n}]/({-4}) $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_y\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+(-1)^n}]/{2} $
    –1 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{2} $
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

  • [1] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 必威体育下载 , 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [2] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 必威体育下载 , 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [3] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 必威体育下载 , 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [4] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 必威体育下载 , 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [5] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 必威体育下载 , 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [6] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 必威体育下载 , 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [7] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展. 必威体育下载 , 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [8] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 必威体育下载 , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [9] 鹿博, 王大军. 超冷极性分子. 必威体育下载 , 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [10] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 必威体育下载 , 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [11] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 必威体育下载 , 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [12] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 必威体育下载 , 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [13] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 必威体育下载 , 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [14] 范桁. 量子计算与量子模拟. 必威体育下载 , 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [15] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 必威体育下载 , 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [16] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 必威体育下载 , 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [17] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 必威体育下载 , 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [18] 任韧, 徐进, 任大男. 半导体核磁共振显微压力的质子全自旋量子门的实现. 必威体育下载 , 2010, 59(11): 8155-8159. doi: 10.7498/aps.59.8155
    [19] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制. 必威体育下载 , 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [20] 方细明, 朱熙文, 冯 芒, 高克林, 施 磊. 核磁共振量子计算中的赝纯态制备. 必威体育下载 , 1999, 48(8): 1405-1411. doi: 10.7498/aps.48.1405
计量
  • 文章访问数:  331
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-02-13
  • 上网日期:  2025-03-12
  • 刊出日期:  2025-04-05

返回文章
返回
Baidu
map