-
在光伏技术快速发展的背景下, 晶硅太阳电池作为主流的光伏器件, 其性能的提升成为研究的热点. 晶硅太阳电池包括硅异质结(SHJ)太阳电池、隧穿氧化物钝化接触(TOPCon)太阳电池及钝化发射极和背面接触(PERC)太阳电池. 晶硅太阳电池的表面钝化层作为提升电池性能的关键之一, 其发展历程与晶硅太阳电池的发展紧密相连. 然而, 由于钝化层的复杂机制和实验研究的高要求, 实现高质量的表面钝化面临挑战. 本文综述了SHJ太阳电池、TOPCon和PERC太阳电池界面钝化技术的关键问题和研究进展, 首先系统地回顾了SHJ太阳电池关键技术突破的研究进展, 并讨论了生长条件对SHJ太阳电池钝化性能的影响以及掺杂层对本征层和钝化性能的影响作用; 其次阐述了近5年来提升TOPCon和PERC太阳电池钝化性能的重要策略和研究成果; 最后给出钝化层技术的发展趋势展望. 将为晶硅太阳电池未来技术改进和性能提升提供参考.With the rapid development of photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have received significant attention due to their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, tunnel oxide passivated contact (TOPCon), and passivated emitter and rear cell (PERC) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high requirements of experimental research, achieving high quality surface passivation is challenging. In this paper, the key issues and research progress of interface passivation technologies for SHJ, TOPCon, and PERC solar cells are comprehensively reviewed. Firstly, the research progress of key technological breakthrough in SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review provides valuable insights for improving future technology and enhancing performance of c-Si solar cells.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] -
RH SiH4 flow/
sccmH2 flow/
sccmR* τeff/μs iVoc/mV 纯 c-Si — — — 0.98 520 RH = 1 40 40 0.970 8.2 538 RH = 10 40 400 0.143 148.1 668 RH = 25 40 1000 0.076 127.1 661 双层钝化(c-Si/界面层/覆盖层) τeff/μs iVoc/mV c-Si/i-a-Si:H(RH = 1)/
i-a-Si:H(RH = 10)33.9 606 c-Si/i-a-Si:H(RH = 25)/
i-a-Si:H(RH = 10)138.9 665 c-Si/i-a-Si:H(RH = 10)/
i-a-Si:H(RH = 25)197.6 683 c-Si Cell structure Voc/mV Jsc/(mA·cm–2) FF/% η/% Ref. n Metal/SiNx+MgF2/Al2O3/p+-Siemitter/n-c-Si/SiOx/n+-poly Si
layer/Metal(n-TOPCon)724.9 42.5 83.3 25.7 [80] p Metal/SiNx/P-doped emitter/p-c-Si/SiOx/B-doped p-poly Si
layer/Metal(p-TOPCon)701 41.1 79.9 23 [81] p Metal/SiNx-MgF2/Al2O3/p+-Si/p-c-Si/SiOx/ 714.2 42.4 80.8 24.3 [82] p P-doped n-poly Si layer/Metal(TOPCoRE)Metal/SiNx/Al2O3/
B-diffusion FSF/p-c-Si/SiOx/P-doped n-poly Si layer/
Metal (TOPCoRE)732.3 42.05 84.3 26 [83] 改善方法 Jsc/(mA·cm–2) Voc/mV FF/% η/% Year Refs. 生长两步氧化 41.80 707.0 83.0 24.60 2022 [85] 正面金属电极和硼发射极之间沉积局部p-a-Si:H 42.03 696.0 83.76 24.50 2024 [84] 在钝化层中插入本征非晶硅(i-a-Si:H)层 40.60 715.0 82.30 23.83 2024 [10] 利用管式PECVD制备掺C poly-Si(n+) 40.81 700.4 82.70 23.64 2024 [86] RS-ALD法制备高质量Al2O3薄膜 — 736.3 84.05 25.78 2024 [87] 中温光浸泡工艺 42.10 729.0 84.0 25.80 2024 [88] 改善方法 Jsc/(mA·cm–2) Voc/mV FF/% η/% Year Ref. 利用臭氧氧化制备氧化铝层 37.89 590 75.70 16.92 2020 [95] 5层 SiNx:H 薄膜 10.273 681.63 81.19 22.56 2021 [94] 背面以 HfO2 作为钝化材料钝化 39.67 662.9 79.26 20.84 2022 [93] 离子注入SiOx Ny:H 40.80 686 81.54 22.80 2022 [96] 发射极表面通过硫化氢(H2S)气体反应钝化 40.03 649 76.79 19.93 2023 [97] 利用SiO2/Al2O3双层钝化 38.73 649 79.00 19.90 2024 [98] 多层SiNx/SiOxNy/SiNx钝化 41.70 682 80.57 22.91 2024 [99] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99]
计量
- 文章访问数: 574
- PDF下载量: 44
- 被引次数: 0