-
传统镁/聚四氟乙烯(Mg/PTFE)红外诱饵剂被广泛应用于对抗红外制导武器, 但随着红外制导技术发展, 其长波红外辐射不足、燃烧温度过高等缺点令其难以对抗新型红外制导弹药. 针对这一问题, 提出了采用硅酸锆(ZrSiO4)作为添加剂来提高传统诱饵剂红外辐射的方法. 以四氧化三铅/镁粉/聚四氟乙烯(Pb3O4/Mg/PTFE)红外诱饵剂作为基础配方, 设计了7种配方, 通过实验研究了不同ZrSiO4添加量对Pb3O4/Mg/PTFE红外诱饵剂效能的影响. 首先测试了基础配方(ZrSiO4添加量为0)和12% ZrSiO4添加量配方的热分解性能, 然后用7.5—14 μm远红外热像仪测量了压制成药柱样品的燃烧过程, 并计算出每个样品的燃烧时间、燃烧温度、质量燃速、辐射面积、远红外辐射亮度和辐射强度. 结果表明: 添加ZrSiO4后, 混合红外诱饵剂反应放热峰值减小, 热效应变差; 随着ZrSiO4添加量增大, 样品燃烧时间持续变长, 燃烧温度持续降低. 当ZrSiO4添加比例为18%时, 样品反应时间最长达3.73 s, 燃烧温度最低达765.46 ℃; 远红外辐射亮度和辐射强度均随着ZrSiO4添加比例升高先增大后减小, 且当ZrSiO4添加比例为6%时分别达到最大值2461 W/(m2·sr)和142 W/sr; 当ZrSiO4添加比例在18%以内和9%以内时分别对基础配方的远红外辐射亮度和辐射强度有提升作用.Traditional composite infrared decoy, magnesium/teflon (Mg/PTFE), has been widely used in countering infrared guided weapons since its advent. However, with the development of infrared guidance technology, its drawbacks such as insufficient far-infrared radiation and high combustion temperature emerge, making it difficult to counter novel infrared guided weapons. To address this issue, a strategy of utilizing zirconium silicate (ZrSiO4) as an additive is proposed to improve the infrared radiation of infrared decoy. Therein, seven formulations with different ratios of ZrSiO4 are designed based on the basic formula of trilead tetraoxide/ magnesium/teflon (Pb3O4/Mg/PTFE) mixed powder. And the effect of ZrSiO4 serving as an additive on the performance of Pb3O4/Mg/PTFE infrared decoy is analyzed through experiments. First, initial experiments are conducted on the thermal decomposition characteristics of the basic formula (ZrSiO4 addition ratio is 0%) and its variant counterpart with 12% ZrSiO4. Subsequently, the combustion behaviors of the compacted formulation samples are examined using an infrared thermal imager operating within the 7.5–14 μm range, subsequently, the combution time, combution temperature, burning rate, radiation area, radiance, and radiation intensity of individual samples are computed. These results show that incorporation of ZrSiO4 reduces the intensity of the primary exothermic peak during the reactions with a mixed infrared decoy agent, yielding suboptimal thermal efficiencies. Furthermore, the combustion durations of the samples progressively increase with ZrSiO4 addition increasing, accompanied by consistent reductions in their combustion temperatures. Specifically, the sample reaction time peaks at 3.73 s at a ZrSiO4 addition ratio of 18%, while the combution temperature drops to a minimum value of 765.46 ℃. Moreover, the far-infrared radiance and radiation intensity demonstrate an initial-increase-then-decrease trend with ZrSiO4 addition increasing, thereby achieving the maximum values of 2461 W/(m2·sr) and 142 W/sr, respectively at a ZrSiO4 addition ratio of 6%. Furthermore, the far-infrared radiance and radiation intensity of the base formulation are enhanced when ZrSiO4 addition ratios are kept within 18% and 9% respectively. Based on the comprehensive analysis of the experimental data and considering the requirements for the infrared decoy in practical applications, a formulation with a ZrSiO4 addition ratio of 6% is adopted as an improved formulation for the Pb3O4/Mg/PTFE infrared decoy.
-
Keywords:
- infrared decoy /
- thermal decomposition /
- thermal diffusivity /
- radiation intensity
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] -
Formula m (Pb3O4)/% m (Mg)/% m (PTFE)/% m (ZrSiO4)/% 1 35 50 15 0 2 33.95 48.5 14.55 3 3 32.9 47 14.1 6 4 31.85 45.5 13.65 9 5 30.8 44 13.2 12 6 29.75 42.5 12.75 15 7 28.7 41 12.3 18 Formula I II Average Weight/g Height/mm Weight/g Height/mm Weight/g Height/mm 1 15.99 12.97 15.98 13.01 15.99 12.99 2 15.99 12.96 15.98 12.90 15.99 12.93 3 15.99 12.95 15.99 12.85 15.99 12.90 4 15.96 12.84 15.96 12.83 15.96 12.84 5 15.97 12.61 15.97 12.75 15.97 12.68 6 15.99 12.53 15.95 12.74 15.97 12.64 7 15.98 12.45 15.98 12.41 15.98 12.43 Formula I II Average T/℃ Combustion
time/sBurning
rate/(g·s–1)T/℃ Combustion
time/sBurning
rate/(g·s–1)T/℃ Combustion
time/sBurning
rate/(g·s–1)1 857.00 3.01 5.32 823.90 3.06 5.23 840.50 3.03 5.27 2 822.58 3.09 5.18 852.19 3.07 5.21 837.39 3.08 5.19 3 830.89 3.16 5.06 834.05 3.11 5.14 832.47 3.14 5.10 4 817.44 3.37 4.75 824.39 3.25 4.92 820.91 3.31 4.84 5 809.42 3.44 4.65 798.71 3.53 4.53 804.06 3.49 4.59 6 782.70 3.71 4.31 788.54 3.62 4.42 785.62 3.67 4.37 7 761.32 3.77 4.24 769.59 3.69 4.34 765.46 3.73 4.29 Material λ/(J·m–1·s–1·K–1) c/(J·kg–1·K–1) ρ/(kg–1·m–3) Mg 165.1 1000 1745 PTFE 0.24 1050 2150 Pb3O4 0.288 226 9100 ZrSiO4 5.1 800 4560 Formula I II Average Radiance/
(W·m–2·sr–1)Radiation
area/mm2Radiation intensity/
(W·sr–1)Radiance/
(W·m–2·sr–1)Radiation
area/mm2Radiation intensity/
(W·sr–1)Radiance/
(W·m–2·sr–1)Radiation
area/mm2Radiation intensity/
(W·sr–1)1 2134 54957 117 2071 46744 97 2103 50851 107 2 2067 50508 104 2329 51714 120 2198 51111 112 3 2452 59449 146 2470 55706 138 2461 57577 142 4 2240 43043 96 2410 59574 144 2325 51308 120 5 2317 41358 96 2277 40256 92 2297 40807 94 6 2256 39882 90 2290 39050 89 2273 39466 90 7 2228 38302 85 2248 36888 82 2238 37595 84 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
计量
- 文章访问数: 319
- PDF下载量: 2
- 被引次数: 0