-
高电荷态离子(highly charged ion, HCI)的精细结构及辐射跃迁性质的精确测量不仅可以检验基本物理模型, 包括: 强场量子电动力学(quantum electrodynamics, QED)效应、电子关联效应、相对论效应、原子核效应等, 而且能够为天体物理和聚变等离子体物理提供关键原子物理参数. 相对于研究较多的类氢和类锂离子体系, 类硼离子的精细结构禁戒跃迁的相对论效应和QED效应的贡献很大, 高精度实验测量与理论计算为进一步检验多电子体系的基本物理模型提供了重要途径. 此外, 类硼离子也被认为是最佳的高电荷态离子光钟候选体系. 本文主要介绍了类硼离子基态 2P 3/2— 2P 1/2跃迁的实验和理论研究最新进展, 概述了其精细结构和超精细结构的研究现状, 并讨论了使用电子束离子阱结合高分辨光谱学实验技术开展类硼离子超精细分裂实验测量的方案, 为未来开展类硼离子超精细分裂实验研究并在更高精度上检验QED效应, 提取原子核磁化分布半径, 检验相关的核结构模型等研究提供了参考.The precise measurement of the fine structure and radiative transition properties of highly charged ions (HCI) is essential for testing fundamental physical models, including strong-field quantum electrodynamics (QED) effects, electron correlation effects, relativistic effects, and nuclear effects. These measurements also provide critical atomic physics parameters for astrophysics and fusion plasma physics. Compared with the extensively studied hydrogen-like and lithium-like ion systems, boron-like ions exhibit significant contributions in terms of relativistic and QED effects in their fine structure forbidden transitions. High-precision experimental measurements and theoretical calculations of these systems provide important avenues for further testing fundamental physical models in multi-electron systems. Additionally, boron-like ions are considered promising candidates for HCI optical clocks. This paper presents the latest advancements in experimental and theoretical research on the ground state 2P 3/2— 2P 1/2transition in boron-like ions, and summarizes the current understanding of their fine and hyperfine structures. It also discusses a proposed experimental setup for measuring the hyperfine splitting of boron-like ions by using an electron beam ion trap combined with high-resolution spectroscopy. This proposal aims to provide a reference for future experimental research on the hyperfine splitting of boron-like ions, to test the QED effects with higher precision, extract the radius of nuclear magnetization distribution, and validate relevant nuclear structure models.
-
Keywords:
- highly charged ion/
- hyperfine structure/
- quantum electrodynamics/
- highly charged ion optical clock
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] -
名称 年份 国家 能量/keV 束流/mA/ 磁场/T 参考文献 Super EBIT 1986 美国 10—200 150 3 [79] EBIT-II 1993 美国 30 200 3 [80] NIST EBIT 1993 美国 33 200 3 [81] Oxford EBIT 1993 英国 0.7—50 200 2.8 [82] Berlin EBIT 1997 德国 40 200 3 [83] Tokyo EBIT 1996 日本 180 330 5 [84] Heidelberg EBIT 2000 德国 100 535 8 [85] Shanghai EBIT 2005 中国 130 160 5 [86] Stockholm EBIT 2007 瑞典 27 150 3 [87] TITAN EBIT 2007 加拿大 27 500 [88] CoBIT 2008 日本 0.1—1 10 0.2 [89] SH-PermEBIT 2012 中国 0.06—5 10.2 0.48 [73] SH-HtscEBIT 2013 中国 0.03—4 10 0.25 [74] HC-EBIT 2018 德国 10 80 0.86 [90] SW-EBIT 2019 中国 0.03—4 9 0.21 [77] 离子 跃迁能量/eV 参考文献 离子 跃迁能量/eV 参考文献 N2+ 0.02157(13) [6] 40Ar13+ 2.8090135821306312(5) [12] O3+ 0.04786(13) [6] 36Ar13+ 2.8090058148895724(5) [12] F4+ 0.0924(4) [6] K14+ 3.5963(31) [6] Ne5+ 0.1623(5) [6] Ca15+ 4.5397(37) [6] Na6+ 0.2652(8) [6] Sc16+ 5.6583(4) [6] Mg7+ 0.4094(3) [6] Ti17+ 6.9732(4) [56] Al8+ 0.6063(13) [6] V18+ 8.5061(50) [6] Si9+ 0.8665(3) [6] Cr19+ 10.2815(17) [56] P10+ 1.202(2) [6] Mn20+ 12.3100(12) [6] S11+ 1.628860(6) [55] Fe21+ 14.6640(35) [56] Cl12+ 2.158835(10) [55] Ni23+ 20.3286(68) [56] Cu24+ 23.7154(93) [56] 离子 精度 类型 年份 实验装置 跃迁能级 结果 209Bi82+ 1.6×10–4 类氢 1994 ESR (1s1/2)F=4, 5 243.87(4) nm[21] 165Ho66+ 2.6×10–4 类氢 1996 SuperEBIT (1s1/2)F=3, 4 572.61(15) nm[25] 185Re74+
187Re74+6.6×10–4 类氢 1998 SuperEBIT (1s1/2)F=2, 3 456.05(30) nm[26]
451.69(30) nm[26]209Bi80+ 3.1×10–2 类锂 1998 SuperEBIT (1s22s1/2)F=4, 5 0.820(26) eV[29] 207Pb81+ 1.9×10–4 类氢 1998 ESR (1s1/2)F=0, 1 1019.7(2) nm[27] 203Tl80+ 8.9×10–5 类氢 2001 SuperEBIT (1s1/2)F=0, 1 385.822(30) nm[28] 205Tl80+ 382.184(34) nm[28] Sc18+ 1.3×10–2 类锂 2008 ESR (1s22s1/2)F=3, 4 0.00620(8) eV[30] 141Pr56+ 6.1×10–3 类锂 2014 SuperEBIT (1s22s1/2)F=2, 3 0.1965(12) eV[31] 1.7×10–2 (1s22p1/2)F=2, 3 0.0640(11) eV[31] 141Pr55+ 9.4×10–3 类铍 (1s22s1/22p1/2)F=5/2, 7/2 0.1494(14) eV[31] 1.8×10–2 (1s22s1/22p1/2)F=3/2, 5/2 0.1033(19) eV[31] 7.1×10–3 (1s22s1/22p1/2)F=3/2, 7/2 0.2531(18) eV[31] 209Bi82+ 2.1×10–4 类氢 2014 ESR (1s1/2)F=4, 5 5.0863(11) eV[22] 209Bi80+ 2.3×10–4 类锂 (1s22s1/2)F=4, 5 0.79750(18) eV[22] 209Bi82+ 2.4×10–5 类氢 2015 ESR (1s1/2)F=4, 5 243.821(6) nm[23] 209Bi82+ 1.7×10–5 类氢 2017 ESR (1s1/2)F=4, 5 243.8221(8)(43) nm[24] 209Bi80+ 9.0×10–6 类锂 (1s22s1/2)F=4, 5 1554.377(4)(14) nm[24] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97]
计量
- 文章访问数:339
- PDF下载量:15
- 被引次数:0