-
单结太阳电池的能量转换效率受限于Shockley-Queisser理论极限, 而突破该极限的最有效策略是构建多结叠层太阳电池. 多结叠层太阳电池通过堆叠多个子电池, 可针对太阳光谱的特定部分进行优化. 钙钛矿材料具有连续可调的能带结构, 为多结叠层电池中的吸光材料组合提供了新的选项. 在钙钛矿基叠层太阳电池领域, 三结叠层太阳电池已经取得了一定进展, 在光伏产业中展现出巨大潜力. 本文首先重点介绍了三结叠层太阳能器件结构及面临的科学问题, 然后介绍了钙钛矿基三结叠层电池的研究进展, 包括钙钛矿/钙钛矿/硅叠层电池、钙钛矿/钙钛矿/有机叠层电池和全钙钛矿叠层电池. 最后, 本文分析了进一步提升三结叠层太阳电池性能的研究方向, 为制备高效三结电池提供了指导.The energy conversion efficiency of single-junction solar cells is limited by the Shockley-Queisser theory and the most effective strategy to break through this limit is to fabricate multi-junction tandem solar cells. Perovskite materials provide a continuously tunable energy band structure, offering a new option for light-absorbing materials in multi-junction tandem cells. In the field of perovskite-based multi-junction tandem solar cells, triple-junction tandem solar cells have demonstrated great potential. The present paper introduces the configuration of triple-junction solar cells and its facing three scientific challenges. 1) Ensuring energy level alignment among sub-cells is a critical concern for three-junction batteries. Specifically, the top wide-band gap sub-cell must possess a band gap ranging from 1.8 to 2.2 eV; however, current perovskite material systems with wide-band gaps exhibit certain defects. 2) It is essential to achieve current matching in multi-junction tandem solar cells while optimizing the absorption layer and minimizing parasitic absorption in order to maximize the current output of solar cells. 3) The functional layers of multi-junction tandem solar cells are stacked sequentially using different deposition methods, which imposes higher compatibility requirements on the intermediate interconnect layers. Subsequently, the research progress of perovskite-based triple-junction tandem solar cells is introduced, including perovskite/perovskite/silicon tandem solar cells, perovskite/perovskite/organic tandem solar cells, and all-perovskite tandem solar cells. Their respective highest efficiencies are 19.4%, 23.87%, and 27.1%. Finally, this paper explores the research directions for further improving the performance of triple-junction solar cells. In addition to improving energy conversion efficiency, perovskite-based solar cells must also solve the stability problems in order to achieve future commercialization, and provide guidance for the development of efficient triple-junction cells.
-
Keywords:
- tandem /
- solar cells /
- wide-band gap perovskite /
- photoinduced phase separation
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] -
组分 禁带
宽度/eV开路
电压/V短路电流密度
/(mA·cm–2)填充
因子/%能量转换
效率/%Ref. Cs0.15MA0.15FA0.70Pb(I0.15Br0.85)3 2.05 1.27 9.4 70.4 8.4 [74] FA0.83Cs0.17Pb(Br0.7I0.3)3 1.94 1.28 11.9 76.0 11.6 [75] Cs0.2FA0.8PbI0.9Br2.1 1.73 1.07 9.9 76.0 8.1 [76] Cs0.2FA0.8PbI0.9Br2.1 1.99 1.262 11.2 73.5 10.4 [77] Rb0.15Cs0.85PbI1.75Br1.25 2.0 1.30 12.4 84.7 13.6 [78] Cs0.15FA0.85Pb(I0.4Br0.6)3 1.97 1.44 12.8 83.0 15.3 [79] CsFAPbIBr 1.8 \ \ \ \ [67] Cs0.2FA0.8Pb(I0.45Br0.55)3 1.90 1.09 11.7 71 9.1 [80] MAPb(I0.5Br0.35Cl0.15)3 1.96 1.28 14.16 76.6 13.88 [69] Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 1.83 1.12 13.6 74.6 11.3 [81] Cs0.1FA0.9PbBr2.1I0.9 1.98 1.38 14.0 76.6 15.0 [82] Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 1.98 1.33 13.05 76.7 13.4 [83] FA0.8Cs0.2Pb(I0.5Br0.5)3 1.84 1.27 16.4 77.0 16.0 [84] FA0.60MA0.15Cs0.25Pb(I0.45Br0.5OCN0.05)3 1.93 1.422 14.18 83.79 16.9 [85] 类型 宽带隙 中间带隙 窄带隙 开路
电压/V短路电流密度
/(mA·cm–2)填充
因子/%正扫/反扫
效率/%认证
效率/%面积
/cm2Ref. 钙钛矿/
钙钛矿/
有机Cs0.15MA0.15FA0.70Pb
(I0.15Br0.85)3 (2.05 eV)Cs0.15MA0.15FA0.70Pb
(I0.85Br0.15)3 (1.62 eV)PM6:BTP-eC9:PCBM
(1.33 eV)3.03 9.1 70.4 19.4 \ 0.1 [74] \ \ \ 19.2 钙钛矿/
钙钛矿/
钙钛矿FA0.83Cs0.17Pb(Br0.7I0.3)3
(1.94 eV)MAPbI3 (1.57 eV) MAPb0.75Sn0.25I3
(1.34 eV)2.7 8.3 0.43 6.7 \ 0.092 [75] \ \ \ \ Cs0.1(FA0.66MA0.34)0.9
PbI2Br (1.73 eV)FA0.66MA0.34
PbI2.85Br0.15 (1.57 eV)FA0.66MA0.34
Pb0.5Sn0.5I3 (1.23eV)2.78 7.4 81 17.3 \ 0.067 [76] 2.78 7.42 82 17.0 Cs0.2FA0.8PbI0.9Br2.1
(1.99 eV)Cs0.05FA0.95Pb
I2.55Br0.45 (1.60 eV)MA0.3FA0.7Pb0.5
Sn0.5I3 (1.22 eV)2.80 8.8 81 20.1 \ 0.049 [77] 2.793 8.8 80.7 19.9 Rb0.15Cs0.85PbI1.75Br1.25
(2.0 eV)Cs0.05FA0.9MA0.05Pb
(I0.9Br0.1)3 (1.60 eV)Cs0.05FA0.7MA0.25Pb0.5
Sn0.5I3-0.05SnF2 (1.22 eV)3.215 9.71 77.93 24.33 23.29 0.049 [78] 3.210 9.63 78.67 24.32 Cs0.15FA0.85Pb(I0.4Br0.6)3
(1.97 eV)Cs0.05FA0.9MA0.05Pb
(I0.85Br0.15)3 (1.77 eV)Cs0.05FA0.7MA0.25
Pb0.5Sn0.5I3 (1.22 eV)3.33 9.7 78 25.1 23.87 0.049 [79] \ \ \ \ 钙钛矿/
钙钛矿/
硅CsFAPbIBr (1.8 eV) CsFAPbIBr (1.53 eV) Si (1.10 eV) 2.688 7.7 68.0 14.0 \ 1.42 [67] 2.692 7.7 58.7 12.1 Cs0.2FA0.8Pb(I0.45Br0.55)3
(1.90 eV)Cs0.1FA0.9PbI3 (1.55 eV) Si (1.10 eV) 2.74 8.54 86.0 20.1 \ 1.03 [80] \ \ \ \ MAPb(I0.5Br0.35Cl0.15)3
(1.96 eV)Cs0.2MA0.05FA0.75PbI3
(1.56 eV)Si (1.10 eV) 2.78 10.18 78.60 22.23 \ 0.1875 [69] 2.78 10.19 76.90 21.79 Cs0.05(FA0.55MA0.45)0.95
Pb(I0.55Br0.45)3 (1.83 eV)Cs0.05(FA0.9MA0.1)0.95Pb
(I0.95Br0.05)3 (1.56 eV)Si (1.10 eV) 2.87 8.9 78.1 20.1 \ 1.0 [81] 2.86 8.9 77.9 20.0 Cs0.1FA0.9PbBr2.1I0.9 (1.98 eV) Rb0.05Cs0.1FA0.85PbI3
(1.52 eV)Si (1.10 eV) 3.04 11.9 72.9 26.4 \ 1.0 [82] 3.01 11.9 71.1 25.5 Rb0.05Cs0.12FA0.83PbI0.95
Cl0.05Br2 (1.98 eV)Cs0.05(FA0.98MA0.02)0.95Pb
(I0.98Br0.02)3 (1.55 eV)Si (1.10 eV) 2.995 11.76 70.80 25.0 24.19 1.04 [83] 2.980 11.73 68.4 23.9 FA0.8Cs0.2Pb(I0.5Br0.5)3 (1.84 eV) FAPbI3 (1.52 eV) Si (1.10 eV) 2.84 11.6 0.74 24.4 \ 1.0 [84] 2.86 11.5 0.73 24.0 FA0.60MA0.15Cs0.25Pb
(I0.45Br0.5OCN0.05)3 (1.93 eV)FA0.9Cs0.1PbI3 (1.55 eV) Si (1.10 eV) 3.132 11.58 76.15 27.62 27.1 1.0 [85] \ \ \ \ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94]
计量
- 文章访问数: 518
- PDF下载量: 33
- 被引次数: 0