The attachment and movement of charged particles in the space plasma environment can result in observable potentials on the asteroid surface, this surface charging phenomenon has been extensively studied. However, the influence of asteroid's rotation on surface charging and the surrounding plasma is not yet fully understood. Traditional methods using numerical integration and PIC have slow computation speeds, and mainly focus on the charging mechanisms of static asteroids. In this study, we established a multi-scale model based on neural networks and the finite element method, improving simulation efficiency and enabling three-dimensional dynamic simulations of rotating asteroids. Simulation results for asteroids with different rotation periods indicate that the maximum and minimum surface potentials decrease as the rotation period increases. The minimum potential on the nightside decreases from -4.96V with one-hour period to -5.97V with one-week period. For asteroids with longer periods, this decreasing trend slows down, with the increase from one week to half a year causing changes of 0.001V in potential. Because strong electric field near the the terminator accelerates electrons and ions, electrons respond more promptly to the electric field because of their much higher mobility and diffusion coefficient, exhibiting a more severe accumulation phenomenon than ions, then decrease the surface potential. This phenomenon is most pronounced when the solar wind is obliquely incident, where the subsolar point is close to the terminator, resulting in the strongest electric field. This downward trend becomes more when the period exceeds one week, specifically, the asteroid and plasma have enough time to reach equilibrium at all angles. During the passage of solar storms, the surface potentials at different stages vary significantly, with potential differences caused by rotation periods reaching hundreds of volts. Surface minerals also play a role, plagioclase is the most sensitive mineral among those explored, while ilmenite appears indifferent to changes in rotation periods. Understanding the surface charging of asteroids under various rotation periods and angles is crucial for further research on solar wind plasma and asteroid's surface dust motion, providing a reference for the safe landing and exploration of asteroids.