搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

赵秀琴, 张文慧
cstr: 32037.14.aps.73.20241103

Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity

Zhao Xiu-Qin, Zhang Wen-Hui
cstr: 32037.14.aps.73.20241103
PDF
HTML
导出引用
  • 在双模Dicke模型的基础上, 研究了光场(模式1)与机械振子有非线性耦合的双模光机械腔中冷原子的量子相变. 利用自旋相干态及变分法得到了系统基态能量的泛函. 通过求解和判定稳定性, 得到了相变点和基态相图. 发现存在正常相和反转正常相的双稳态, 超辐射相和反转正常相的共存态, 以及单独存在的反转正常相. 原子与两模光场相互作用强度的不同对相变点的值有较大影响, 存在正常相经过相变点到超辐射相的量子相变. 光-声子非线性耦合对相变点没有影响, 但诱导了超辐射相的塌缩, 存在一个转折点, 经过转折点可以实现超辐射相到反转的正常相的量子相变. 超辐射相的区域随着光子-声子耦合的增加而减小, 在耦合的临界值处收缩为零, 即转折点和相变点重合, 并且有可能出现两个正常相之间的原子布居数的反转; 光-声子的非线性耦合还产生了不稳定的非零光子态, 它与超辐射态相对应. 在不含机械振子时, 回到双模Dicke模型的结果.
    In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model. The functional of the ground state energy of the system is obtained by spin coherent states and variational method. By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained. It is found that there are bistable state of normal phase and reverse normal phase, coexistent state of superradiation phase and reversed normal phase, and reversed normal phase that exists alone. The different interaction strengths between atoms and two-mode light fields greatly affect the value of the phase transition point. There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase. The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase. There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized. The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases. The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state. In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
        通信作者:张文慧,zhangwh@tynu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 12304404)和山西省基础研究计划(批准号: 202203021222236)资助的课题.
        Corresponding author:Zhang Wen-Hui,zhangwh@tynu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 12304404) and the Basic Research Project of Shanxi Province, China (Grant No. 202203021222236).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

    • 区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline{{\gamma }_{1}^{2}}, \text{ }\overline{{\gamma }_{2}^{2}}) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ {\begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array}} \right] $ 特征值$ \left[ {{H_ - }} \right] $
      I (0.3, 0.4) (0, 0) –0.5 $ \left[ {\begin{array}{*{20}{c}} {1.82}&{ - 0.24} \\ { - 0.24}&{1.68} \end{array}} \right] $ (2, 1.5)
      II (0.8, 0.7) (0.0347, 0.0266) –0.5037 $ \left[ {\begin{array}{*{20}{c}} {1.1129}&{ - 0.7762} \\ { - 0.7762}&{1.3208} \end{array}} \right] $ (2, 0.4337)
      III (0.6, 1.6) (0.0794, 0.5649) –0.8156 $ \left[ {\begin{array}{*{20}{c}} {1.9711}&{ - 0.0711} \\ { - 0.0711}&{1.7943} \end{array}} \right] $ (2, 1.7654)
      IV (1.5, 1.5) (0.5347, 0.5347) –1.1806 $ \left[ {\begin{array}{*{20}{c}} {1.9506}&{ - 0.0494} \\ { - 0.0494}&{1.9506} \end{array}} \right] $ (2, 1.9012)
      V (1.5, 0.5) (0.4725, 0.0525) –0.725 $ \left[ {\begin{array}{*{20}{c}} {1.7119}&{ - 0.0960} \\ { - 0.0960}&{1.9680} \end{array}} \right] $ (2, 1.6800)
      下载: 导出CSV

      区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline {\gamma _1^2} , {\text{ }}\overline {\gamma _2^2} ) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ \begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array} \right] $ 特征值$ \left[ {{H_ - }} \right] $
      I (0.4, 0.3) (4.5925, 0.01716) 1.2585 $ \left[ \begin{array}{*{20}{c}} { - 3.5436}&{ - 0.0326} \\ { - 0.0326}&{1.9674} \end{array} \right] $ (–3.5438, 1.9676)
      II (0.7, 0.8) $ \left\{ {\begin{aligned} &{\left( {4.1771, 0.1478} \right)} \\ &{\left( {0.0273, 0.0353} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.7714} \\ &{ - 0.5038} \end{aligned}} \right. $ $ \left\{ \begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 3.033}&{ - 0.0237} \\ { - 0.0237}&{1.9730} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.2929}&{ - 0.7707} \\ { - 0.7707}&{1.1192} \end{array} \right]} \end{aligned} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 0.0334, 1.9731} \right)} \\ &{\left( {1.9816, 0.4305} \right)} \end{aligned}} \right. $
      III (0.8, 1.2) $ \left\{ {\begin{aligned} &{\left( {4.0258, 0.3439} \right)} \\ &{\left( {0.1303, 0.2781} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.3866} \\ & { - 0.6418} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 2.8431}&{ - 0.0182} \\ { - 0.0182}&{1.9727} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.8432, 1.9728} \right)} \\ &{\left( {1.9046, 1.4880} \right)} \end{aligned}} \right. $
      IV (1.5, 1.5) $ \left\{ {\begin{aligned} &{\left( {2.7669, 0.5519} \right)} \\ &{\left( {0.7439, 0.5390} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{ - 1.0907} \\ & { - 1.2190} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 1.3319}&{ - 0.0116} \\ { - 0.0116}&{1.9884} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 1.3220, 1.9884} \right)} \\ & {\left( {1.9632, 1.0673} \right)} \end{aligned}} \right. $
      V (1.2, 0.8) $ \left\{ {\begin{aligned} &{\left( {3.4015, 0.1540} \right)} \\ &{\left( {0.3252, 0.1263} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned}& { - 0.1776} \\ &{ - 0.6491} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left[ \begin{array}{*{20}{c}} { - 2.1072}&{ - 0.0141} \\ { - 0.0141}&{1.9907} \end{array} \right]} \\ &{\left[ \begin{array}{*{20}{c}} {1.3319}&{ - 0.1853} \\ { - 0.1853}&{1.8765} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.1073, 1.9907} \right)} \\ &{\left( {1.9336, 1.2748} \right)} \end{aligned}} \right. $
      下载: 导出CSV

      $ {{{g_1}}}/{{{\omega _{\text{a}}}}} $ $ \overline {\gamma _1^2} $ $ {\varepsilon _ + } $ $ {{{\partial ^2}{\varepsilon _ + }}}/{{\partial \gamma _1^2}} $
      0.4 5.0910 3.531 –4.0728
      0.8 5.0614 4.3676 –4.0491
      1.2 5.0437 5.2408 –4.0350
      1.6 5.0336 6.1243 –4.0269
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

    • [1] 赵秀琴, 张文慧, 王红梅.非线性相互作用引起的双模Dicke模型的新奇量子相变. 必威体育下载 , 2024, 73(16): 160302.doi:10.7498/aps.73.20240665
      [2] 谭辉, 曹睿, 李永强.基于动力学平均场的光晶格超冷原子量子模拟. 必威体育下载 , 2023, 72(18): 183701.doi:10.7498/aps.72.20230701
      [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇.自旋-1/2量子罗盘链的量子相与相变. 必威体育下载 , 2022, 71(3): 030302.doi:10.7498/aps.71.20211433
      [4] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙.Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 必威体育下载 , 2021, 70(10): 100201.doi:10.7498/aps.70.20202066
      [5] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇.自旋-1/2量子罗盘链的量子相与相变. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211433
      [6] 周晓凡, 樊景涛, 陈刚, 贾锁堂.光学腔中一维玻色-哈伯德模型的奇异超固相. 必威体育下载 , 2021, 70(19): 193701.doi:10.7498/aps.70.20210778
      [7] 保安.各向异性ruby晶格中费米子体系的Mott相变. 必威体育下载 , 2021, 70(23): 230305.doi:10.7498/aps.70.20210963
      [8] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒.含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 必威体育下载 , 2020, 69(9): 090302.doi:10.7498/aps.69.20191773
      [9] 刘彪, 周晓凡, 陈刚, 贾锁堂.交错跃迁Hofstadter梯子的量子流相. 必威体育下载 , 2020, 69(8): 080501.doi:10.7498/aps.69.20191964
      [10] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖.超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 必威体育下载 , 2020, 69(19): 193201.doi:10.7498/aps.69.20200513
      [11] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球.重费米子材料与物理. 必威体育下载 , 2019, 68(17): 177101.doi:10.7498/aps.68.20190801
      [12] 陈西浩, 王秀娟.一维扩展量子罗盘模型的拓扑序和量子相变. 必威体育下载 , 2018, 67(19): 190301.doi:10.7498/aps.67.20180855
      [13] 黄珊, 刘妮, 梁九卿.光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 必威体育下载 , 2018, 67(18): 183701.doi:10.7498/aps.67.20180971
      [14] 宋加丽, 钟鸣, 童培庆.横场中具有周期性各向异性的一维XY模型的量子相变. 必威体育下载 , 2017, 66(18): 180302.doi:10.7498/aps.66.180302
      [15] 俞立先, 梁奇锋, 汪丽蓉, 朱士群.双模Dicke模型的一级量子相变. 必威体育下载 , 2014, 63(13): 134204.doi:10.7498/aps.63.134204
      [16] 刘妮.激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变. 必威体育下载 , 2013, 62(1): 013402.doi:10.7498/aps.62.013402
      [17] 赵建辉, 王海涛.应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 必威体育下载 , 2012, 61(21): 210502.doi:10.7498/aps.61.210502
      [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎.Co(S1-xSex)2系统中的铁磁量子相变. 必威体育下载 , 2009, 58(2): 1195-1199.doi:10.7498/aps.58.1195
      [19] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎.NiS2-xSex在x=1.00附近的反铁磁量子相变. 必威体育下载 , 2008, 57(4): 2409-2414.doi:10.7498/aps.57.2409
      [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇.转动诱发原子核量子相变的一种可能途径. 必威体育下载 , 2007, 56(3): 1329-1333.doi:10.7498/aps.56.1329
    计量
    • 文章访问数:258
    • PDF下载量:10
    • 被引次数:0
    出版历程
    • 收稿日期:2024-08-06
    • 修回日期:2024-11-19
    • 上网日期:2024-11-25
    • 刊出日期:2024-12-20

      返回文章
      返回
        Baidu
        map