搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰

Recent progress of low-voltage memristor for neuromorphic computing

Gong Yi-Chun, Ming Jian-Yu, Wu Si-Qi, Yi Ming-Dong, Xie Ling-Hai, Huang Wei, Ling Hai-Feng
PDF
HTML
导出引用
  • 忆阻器是非易失性存储器和神经形态计算的优秀候选者. 电压调制作为其关键性能策略, 是获得纳瓦超低功耗、飞焦超低能耗工作的基础, 有助于打破功耗墙、突破后摩尔时代算力瓶颈. 然而基于高密度集成忆阻器阵列的类脑计算架构还需重点考虑开/关比、高速响应、保留时间和耐久性等器件稳定性参数. 因此如何在低电场下实现离子/电子的高效、稳定驱动, 构筑电压低于1 V的低电压、高性能忆阻器成为了当前实现类脑计算能效系统的关键问题. 本文综述了近年来面向类脑计算的低电压忆阻器的研究进展. 首先, 探讨了低电压忆阻器的机制, 包括电化学金属化机制和价态变化机制. 在此基础上, 系统总结了各材料体系在低电压忆阻器中的优势, 涵盖了过渡金属氧化物、二维材料和有机材料等. 进一步围绕材料工程、掺杂工程、界面工程提出了相应的低电压忆阻器实现策略, 最后, 展望了基于低电压忆阻器的类脑功能模拟及神经形态计算应用, 并对现存问题和未来研究方向进行了讨论.
    Memristors stand out as the most promising candidates for non-volatile memory and neuromorphic computing due to their unique properties. A crucial strategy for optimizing memristor performance lies in voltage modulation, which is essential for achieving ultra-low power consumption in the nanowatt range and ultra-low energy operation below the femtojoule level. This capability is pivotal in overcoming the power consumption barrier and addressing the computational bottlenecks anticipated in the post-Moore era. However, for brain-inspired computing architectures utilizing high-density integrated memristor arrays, key device stability parameters must be considered, including the on/off ratio, high-speed response, retention time, and durability. Achieving efficient and stable ion/electron transport under low electric fields to develop low-voltage, high-performance memristors operating below 1 V is critical for advancing energy-efficient neuromorphic computing systems. This review provides a comprehensive overview of recent advancements in low-voltage memristors for neuromorphic computing. Firstly, it elucidates the mechanisms that control the operation of low-voltage memristor, such as electrochemical metallization and anion migration. These mechanisms play a pivotal role in determining the overall performance and reliability of memristors under low-voltage conditions. Secondly, the review then systematically examines the advantages of various material systems employed in low-voltage memristors, including transition metal oxides, two-dimensional materials, and organic materials. Each material system has distinct benefits, such as low ion activation energy, and appropriate defect density, which are critical for optimizing memristor performance at low operating voltages. Thirdly, the review consolidates the strategies for implementing low-voltage memristors through advanced materials engineering, doping engineering, and interface engineering. Moreover, the potential applications of low-voltage memristors in neuromorphic function simulation and neuromorphic computing are discussed. Finally, the current problems of low-voltage memristors are discussed, especially the stability issues and limited application scenarios. Future research directions are proposed, focusing on exploring new material systems and physical mechanisms that could be integrated into device design to achieve higher-performance low-voltage memristors.
        通信作者:凌海峰,iamhfling@njupt.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2021YFA0717900)、国家自然科学基金(批准号: 62288102, 22275098, 62471251)和江苏省研究生科研与实践创新计划项目(批准号: 46030CX21252)资助的课题.
        Corresponding author:Ling Hai-Feng,iamhfling@njupt.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0717900), the National Natural Science Foundation of China (Grant Nos. 62288102, 22275098, 62471251), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. 46030CX21252).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

    • 器件
      结构
      工作机制 开关电压 开关比 开关
      速度/ns
      保留
      时间
      耐久性
      (循环)
      功耗/
      能耗
      应用 文献
      Pt/HfAlOx/TaN VCM BRS:
      +1/–1 V
      50 4.28 aJ 手写数字识别 [171]
      Ta/Ta2O5:Ag/Ru ECM BRS:
      +0.7 V/–0.7 V
      100 ≈5×104s 5×107 [42]
      Pt/YSZ/Zr VCM BRS:
      +0.7 V/–0.7 V
      2 104s 108 [172]
      Ag/SnOx/SnSe ECM BRS: +0.4/–0.1 V >103 105s 4000 [157]
      EGaIn/MACsPbI/
      PEDOT: PSS/ITO
      VCM BRS:
      +0.6/–0.41 V
      >105 105s 104 3.8 mW [114]
      ITO/FA1–yMAyPbI3–xClx/
      (PEA)2PbI4/Au
      VCM BRS:
      +1.0/–0.5 V
      200 1 fJ 突触功能模拟 [49]
      Ag/PMMA/MAPbI3:
      Ag/Au
      ECM TS:±0.22 V 40 2500 10 μW 伤害传感器 [59]
      Ag/CsPbI3/Ag ECM TS:100 mV 100 ms 2 nW 储备池计算 [111]
      PET-ITO/MAPbI3/
      PEAI/Au
      VCM BRS:
      +1/–1 V
      50 13.5 aJ 神经元积分-
      发放功能
      [152]
      Ag/MoOx/
      CsI (CsBr)/Ag
      ECM BRS:
      –0.16/+0.07 V
      >1010 <200 >106s >105 <3.31 pW 模拟手写数字分类 [62]
      Pt/CuI/Cu ECM BRS:
      +0.64/–0.19 V
      103 17 h 125 8.73 µW 图像硬件加密和解密 [10]
      Ag/PMMA/
      Cs2AgBiBr6/ITO
      ECM BRS:
      +0.6/–0.6 V
      >10 188 pJ 手写数字识别 [58]
      Pt/MoS2/Ti VCM BRS:
      +0.65/–0.90 V
      160 10 years 1×107 [117]
      Au/HfSe2/Au VCM BRS:
      +0.742/–0.817 V
      102 500 0.82 pJ 矩阵计算 [80]
      Ag/BNOx/Graphene ECM BRS: 0.6/0.1 V 100-1000 100 [75]
      Ag/Protein nanowires/Ag ECM TS:60 ± 4 mV 104 神经元-突触
      联立积分发放
      [126]
      Au/PBFCL10/Ag ECM BRS:
      +0.2/–0.2 V
      21 >106s 2.35 μW HNN [131]
      ITO/PEDOT:PSS/
      pTPD/CsPbBr3NCs/Ag
      ECM TS:<1 V 103 105s TS:2×106BRS:5.6×103 储备池计算 [154]
      Au/MSFP/Au VCM BRS:
      +1.0/–1.0 V
      104s 100 图像处理 [106]
      ITO/PVK:TCNQ/Ag ECM BRS:
      +0.69/–0.52 V
      TS:0.21 V
      ≈103 104s 104 15.2 μW 突触、神经元
      功能模拟
      [109]
      Au/TPPS/Au VCM BRS:
      –0.1/+0.3 V
      16.25 pW—
      2.06 nW
      突触模拟 [105]
      W(Ag)/PI/Pt/Ti ECM TS:0.56 V ≈103 0.44 ms 300 80 nW 图像处理 [107]
      Pt/CuZnS/Ag ECM Vset=0.089 V ≈106 >1000 s 100 0.1 nW 模式识别 [132]
      Pt/DDP-CuNPs/Au VCM TS:4 mV 100 SNN [145]
      Ag/c-YY NW/Ag ECM TS:≤0.1 V 106 750 fJ SNN [124]
      Ag/Ag-IPS/Au ECM BRS:
      +0.43/–0.21 V
      108 100 105s 900 18.5 fJ 图像处理 [138]
      Ag/PMMA/MAPbI3:
      Ag/Au
      ECM TS:≈0.2 V 40 2500 伤害感受器 [59]
      Al/Ti3C2:Ag/Pt VCM BRS:
      +2.0/–2.0 V
      106 0.35 pJ 突触模拟 [137]
      Ag/TiO2:Ag/Pt ECM BRS:
      +0.1/–0.1 V
      26.0 pJ 突触模拟 [140]
      ITO/NiSAs/
      N-C/PVP/Au
      VCM BRS:
      +0.7/–1.1 V
      103 100 >106s 500 全加器 [99]
      Au/silk: AgNO3/Ag ECM TS:0.17 V 3 × 106 103s 100 突触模拟 [147]
      Ag/MXene/Pt ECM BRS:
      +1.33/–0.94 V
      >105 104s 103 1~10 fJ ANN [149]
      Ag/a-COx/ta-C/Pt ECM BRS:1.5 V/–1.0 V 100 s 6 nW [155]
      Au/h-BN/Au VCM TS:0.1 V 107 40 >20000 s 500 逻辑门 [158]
      Ag/GeTe/MoTe2/Pt ECM BRS:
      +0.15/–0.14 V
      102 104s 105 ≈30 nJ 突触模拟 [162]
      Ag/SnS/Pt ECM BRS:
      +0.2/–0.1 V
      108 1.5 105s 104 100 fJ 图像分类 [73]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

    • [1] 吴朝俊, 方礼熠, 杨宁宁.含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 必威体育下载 , 2024, 73(1): 010501.doi:10.7498/aps.73.20231211
      [2] 郭慧朦, 梁燕, 董玉姣, 王光义.蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 必威体育下载 , 2023, 72(7): 070501.doi:10.7498/aps.72.20222013
      [3] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山.基于忆阻器阵列的下一代储池计算. 必威体育下载 , 2022, 71(14): 140701.doi:10.7498/aps.71.20220082
      [4] 温新宇, 王亚赛, 何毓辉, 缪向水.忆阻类脑计算. 必威体育下载 , 2022, 71(14): 140501.doi:10.7498/aps.71.20220666
      [5] 胡炜, 廖建彬, 杜永乾.一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 必威体育下载 , 2021, 70(17): 178505.doi:10.7498/aps.70.20210116
      [6] 史晨阳, 闵光宗, 刘向阳.蛋白质基忆阻器研究进展. 必威体育下载 , 2020, 69(17): 178702.doi:10.7498/aps.69.20200617
      [7] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎.新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 必威体育下载 , 2019, 68(23): 238501.doi:10.7498/aps.68.20191023
      [8] 邵楠, 张盛兵, 邵舒渊.具有经验学习特性的忆阻器模型分析. 必威体育下载 , 2019, 68(19): 198502.doi:10.7498/aps.68.20190808
      [9] 邵楠, 张盛兵, 邵舒渊.具有感觉记忆的忆阻器模型. 必威体育下载 , 2019, 68(1): 018501.doi:10.7498/aps.68.20181577
      [10] 吴洁宁, 王丽丹, 段书凯.基于忆阻器的时滞混沌系统及伪随机序列发生器. 必威体育下载 , 2017, 66(3): 030502.doi:10.7498/aps.66.030502
      [11] 黎栋栋, 周武.二维原子晶体的低电压扫描透射电子显微学研究. 必威体育下载 , 2017, 66(21): 217303.doi:10.7498/aps.66.217303
      [12] 袁泽世, 李洪涛, 朱晓华.基于忆阻器的数模混合随机数发生器. 必威体育下载 , 2015, 64(24): 240503.doi:10.7498/aps.64.240503
      [13] 李志军, 曾以成, 李志斌.改进型细胞神经网络实现的忆阻器混沌电路. 必威体育下载 , 2014, 63(1): 010502.doi:10.7498/aps.63.010502
      [14] 刘玉东, 王连明.基于忆阻器的spiking神经网络在图像边缘提取中的应用. 必威体育下载 , 2014, 63(8): 080503.doi:10.7498/aps.63.080503
      [15] 田晓波, 徐晖, 李清江.横截面积参数对钛氧化物忆阻器导电特性的影响. 必威体育下载 , 2014, 63(4): 048401.doi:10.7498/aps.63.048401
      [16] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳.忆阻器及其阻变机理研究进展. 必威体育下载 , 2014, 63(18): 187301.doi:10.7498/aps.63.187301
      [17] 董哲康, 段书凯, 胡小方, 王丽丹.两类纳米级非线性忆阻器模型及串并联研究. 必威体育下载 , 2014, 63(12): 128502.doi:10.7498/aps.63.128502
      [18] 许碧荣.一种最简的并行忆阻器混沌系统. 必威体育下载 , 2013, 62(19): 190506.doi:10.7498/aps.62.190506
      [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫.界面效应调制忆阻器研究进展. 必威体育下载 , 2012, 61(21): 217306.doi:10.7498/aps.61.217306
      [20] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭.基于氧化铟锡的无结低电压薄膜晶体管. 必威体育下载 , 2012, 61(19): 197201.doi:10.7498/aps.61.197201
    计量
    • 文章访问数:363
    • PDF下载量:26
    • 被引次数:0
    出版历程
    • 收稿日期:2024-07-23
    • 修回日期:2024-08-30
    • 上网日期:2024-09-07
    • 刊出日期:2024-10-20

      返回文章
      返回
        Baidu
        map