搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

屠秉晟

Precise measurements of electrongfactors in bound states of few-electron ions

Tu Bing-Sheng
PDF
HTML
导出引用
  • 少电子离子束缚态电子 g因子的精密测量是借助原子分子体系研究束缚态量子电动力学(QED)理论的有效途径. 特别是在高电荷态重核体系中, 原子核与内壳层电子之间极强的电磁相互作用为研究极端电磁场环境下的QED效应提供了独一无二的条件. 通过精确测量束缚态电子 g因子, 还可以分析核效应、测定核结构参数、确定基本物理常数等. 少电子离子束缚态电子 g因子的研究已经成为精密谱学方向的前沿课题. 潘宁离子阱(借助稳态电磁场囚禁离子的系统)是进行 g因子测量的有效实验装置之一. 本综述将对基于潘宁离子阱开展少电子离子束缚态电子 g因子的实验研究进行全面回顾, 介绍基本实验原理与测量方法, 重点论述该领域在近几年中的重要实验成果, 并对未来发展进行简要展望.
    The electron gfactor is an important fundamental structural parameter in atomic physics, as it reveals various mechanisms of interactions between electrons and external fields. Precise measurements of gfactors of bound electrons in simple atomic and molecular systems provide an effective method for investigating the bound-state quantum electrodynamics (QED) theory. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nuclei and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the gfactors of the bound-state electrons are also important for determining nuclear effects, nuclear parameters and fundamental constants. The research on gfactors of the bound-state electrons has become a frontier topic in fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to precisely measure the gfactor. This paper presents a comprehensive review of the experiments on gfactors for few-electron simple systems in Penning traps, including experimental principles, experimental setups, measurement methods, and a summary of important research findings. The physical concept of the electron gfactor and its historical research background are introduced. The electron gfactor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g factor, discrepancies between the fine-structure constants and other experimental results in atomic physics are identified. Notably, the gfactor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the principle of measuring the bound-state electron gfactors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced. This paper reviews several milestone experiments including (1) the stringent test of bound-state QED by precise measurement of bound-state electron gfactor of a 118Sn 49+ion, (2) measurement of the gfactors of lithium-like and boron-like ions and their applications, and (3) measurement of the g-factor isotope shift by using an advanced two-ion balance technique in the Penning trap, providing an insight into the QED effects in nuclear recoil. Finally, this paper summarizes the challenges currently faced in measuring the gfactors of bound-state electrons in few-electron ion systems and provides the prospects for the future developments of this field.
        通信作者:屠秉晟,bingshengtu@fudan.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2022YFA1602504)、国家自然科学基金(批准号: 12204110)和上海浦江人才计划(批准号: 22PJ1401100)资助的课题.
        Corresponding author:Tu Bing-Sheng,bingshengtu@fudan.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602504), the National Natural Science Foundation of China (Grant No. 12204110), and the Shanghai Pujiang Talent Program (Grant No. 22PJ1401100).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

    • 12C5+ 16O7+ 20Ne9+ 28Si13+ 118Sn49+
      gDirac 1.99872135439(1) 1.99772600306(2) 1.99644517090 1.9930235716 1.90807920530
      Free QED 0.00231930437(1) 0.00231930437(1) 0.00231930435 0.00231930437(1) 0.00231930435
      BS-QED 0.00000084340(3) 0.00000159438(11) 0.00000265069(12) 0.0000058558(17) 0.000148098(298)
      FNS 0.00000000041 0.00000000155(1) 0.000 00000476(1) 0.000000 205 0.000014489(24)
      NR 0.00000008762 0.00000011697 0.00000014641 0.0000002051(1) 0.000000726
      Hadronic –0.000000002
      gtheo 2.00104159018(3) 2.00004702128(11) 1.99876727711(12) 1.995348958 0(17) 1.910561821(299)
      gexp 2.0010415964(45) 2.0000470254(46) 1.99876727699(19) 1.99534895910(81) 1.910562058962(914)
      注:gDirac代表Dirac方程计算的g因子值, Free QED代表自由(电子)QED效应贡献, BS-QED代表束缚态(电子)QED效应贡献, FNS代表核尺寸效应贡献, NR代表核反冲效应贡献, Hadronic代表强子效应贡献.12C5+,16O7+,28Si13数据来自于文献[10],20Ne9+的数据来自于文献[12],118Sn49+的数据来自于文献[13].
      下载: 导出CSV

      28Si11+ 40Ca17+ 40Ar13
      gDirac 1.9982547533 1.9964260253 0.66377545
      QED 0.0023202857 (17) 0.0023216601(17) –0.0007682(4)
      e-e int. 0.000314 8098 (22) 0.0004542910 (24) 0.0006500(2)
      FNS + NR 0.0000000436 0.0000000662 –0.0000091(2)
      gtheo 2.000889 8924 (28) 1.9992020426 (29) 0.6636482 (5)
      gexp 2.00088988845 (14) 1.9992020405 (11) 0.66364845532(93)
      注: QED代表经过屏蔽势修正后的束缚态QED效应, e-e int.代表电子-电子关联效应贡献;28Si11+40Ca17+数据来自于文献[23],40Ar13数据来自于文献[24].
      下载: 导出CSV

      效应贡献 $ {{\Delta }}g=g\left({}_{}{}^{20}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right)-g\left({}_{}{}^{22}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right) $
      ($ \times {10}^{-9} $)
      FNS 0.166(11)
      Recoil, non-QED 13.2827
      Recoil, QED 0.0435
      Recoil, (α/π)(me/M) –0.0103
      Recoil, (me/M)2 –0.0077
      Nuclear polarization 0.0001(3)
      Δgtotal theory 13.474(11)
      Δgexperiment 13.47524(53)stat(99)sys
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

    • [1] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军.极紫外波段的少电子原子精密光谱测量. 必威体育下载 , 2024, 73(20): 204205.doi:10.7498/aps.73.20241231
      [2] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊.锁相放大器的研究进展. 必威体育下载 , 2023, 72(22): 224206.doi:10.7498/aps.72.20230579
      [3] 李岩, 任志红.多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 必威体育下载 , 2023, 72(22): 220302.doi:10.7498/aps.72.20231179
      [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文.电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 必威体育下载 , 2022, 71(3): 033201.doi:10.7498/aps.71.20211663
      [5] 陈娇娇, 孙羽, 温金录, 胡水明.稳定的高亮度低速亚稳态氦原子束流. 必威体育下载 , 2021, 70(13): 133201.doi:10.7498/aps.70.20201833
      [6] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲.频域反射法光纤延时精密测量. 必威体育下载 , 2021, 70(8): 084204.doi:10.7498/aps.70.20201075
      [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文.电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211663
      [8] 王谨, 詹明生.基于原子干涉仪的微观粒子弱等效原理检验. 必威体育下载 , 2018, 67(16): 160402.doi:10.7498/aps.67.20180621
      [9] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊.近距离牛顿反平方定律实验检验进展. 必威体育下载 , 2018, 67(16): 160401.doi:10.7498/aps.67.20180636
      [10] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊.基于金刚石色心自旋磁共振效应的微位移测量方法. 必威体育下载 , 2018, 67(4): 047601.doi:10.7498/aps.67.20171914
      [11] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰.基于金刚石氮-空位色心的精密磁测量. 必威体育下载 , 2018, 67(16): 167601.doi:10.7498/aps.67.20181084
      [12] 管桦, 黄垚, 李承斌, 高克林.高准确度的钙离子光频标. 必威体育下载 , 2018, 67(16): 164202.doi:10.7498/aps.67.20180876
      [13] 李明, 姚宁, 冯志波, 韩红培, 赵正印.外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响. 必威体育下载 , 2018, 67(5): 057101.doi:10.7498/aps.67.20172213
      [14] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊.万有引力常数G精确测量实验进展. 必威体育下载 , 2018, 67(16): 160603.doi:10.7498/aps.67.20181381
      [15] 穆秀丽, 李传亮, 邓伦华, 汪海玲.用于α和μ常数变化测量的碘离子光谱研究. 必威体育下载 , 2017, 66(23): 233301.doi:10.7498/aps.66.233301
      [16] 王金涛, 刘子勇.基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 必威体育下载 , 2013, 62(3): 037702.doi:10.7498/aps.62.037702
      [17] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy.高迁移率InGaAs/InP量子阱中的有效g因子. 必威体育下载 , 2012, 61(12): 127102.doi:10.7498/aps.61.127102
      [18] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树.GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究. 必威体育下载 , 2006, 55(5): 2618-2622.doi:10.7498/aps.55.2618
      [19] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏.掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子. 必威体育下载 , 2006, 55(4): 1991-1996.doi:10.7498/aps.55.1991
      [20] 张红梅, 马东平, 刘德.LiNbO_3:Ni~(2+)的常压能谱和g因子. 必威体育下载 , 2002, 51(7): 1554-1558.doi:10.7498/aps.51.1554
    计量
    • 文章访问数:269
    • PDF下载量:12
    • 被引次数:0
    出版历程
    • 收稿日期:2024-05-14
    • 修回日期:2024-09-13
    • 上网日期:2024-09-18
    • 刊出日期:2024-10-20

      返回文章
      返回
        Baidu
        map