-
少电子离子束缚态电子 g因子的精密测量是借助原子分子体系研究束缚态量子电动力学(QED)理论的有效途径. 特别是在高电荷态重核体系中, 原子核与内壳层电子之间极强的电磁相互作用为研究极端电磁场环境下的QED效应提供了独一无二的条件. 通过精确测量束缚态电子 g因子, 还可以分析核效应、测定核结构参数、确定基本物理常数等. 少电子离子束缚态电子 g因子的研究已经成为精密谱学方向的前沿课题. 潘宁离子阱(借助稳态电磁场囚禁离子的系统)是进行 g因子测量的有效实验装置之一. 本综述将对基于潘宁离子阱开展少电子离子束缚态电子 g因子的实验研究进行全面回顾, 介绍基本实验原理与测量方法, 重点论述该领域在近几年中的重要实验成果, 并对未来发展进行简要展望.
The electron gfactor is an important fundamental structural parameter in atomic physics, as it reveals various mechanisms of interactions between electrons and external fields. Precise measurements of gfactors of bound electrons in simple atomic and molecular systems provide an effective method for investigating the bound-state quantum electrodynamics (QED) theory. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nuclei and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the gfactors of the bound-state electrons are also important for determining nuclear effects, nuclear parameters and fundamental constants. The research on gfactors of the bound-state electrons has become a frontier topic in fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to precisely measure the gfactor. This paper presents a comprehensive review of the experiments on gfactors for few-electron simple systems in Penning traps, including experimental principles, experimental setups, measurement methods, and a summary of important research findings. The physical concept of the electron gfactor and its historical research background are introduced. The electron gfactor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g factor, discrepancies between the fine-structure constants and other experimental results in atomic physics are identified. Notably, the gfactor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the principle of measuring the bound-state electron gfactors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced. This paper reviews several milestone experiments including (1) the stringent test of bound-state QED by precise measurement of bound-state electron gfactor of a 118Sn 49+ion, (2) measurement of the gfactors of lithium-like and boron-like ions and their applications, and (3) measurement of the g-factor isotope shift by using an advanced two-ion balance technique in the Penning trap, providing an insight into the QED effects in nuclear recoil. Finally, this paper summarizes the challenges currently faced in measuring the gfactors of bound-state electrons in few-electron ion systems and provides the prospects for the future developments of this field. -
Keywords:
- few-electron ions/
- gfactor/
- Penning trap/
- precision measurement
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] -
12C5+ 16O7+ 20Ne9+ 28Si13+ 118Sn49+ gDirac 1.99872135439(1) 1.99772600306(2) 1.99644517090 1.9930235716 1.90807920530 Free QED 0.00231930437(1) 0.00231930437(1) 0.00231930435 0.00231930437(1) 0.00231930435 BS-QED 0.00000084340(3) 0.00000159438(11) 0.00000265069(12) 0.0000058558(17) 0.000148098(298) FNS 0.00000000041 0.00000000155(1) 0.000 00000476(1) 0.000000 205 0.000014489(24) NR 0.00000008762 0.00000011697 0.00000014641 0.0000002051(1) 0.000000726 Hadronic — — — — –0.000000002 gtheo 2.00104159018(3) 2.00004702128(11) 1.99876727711(12) 1.995348958 0(17) 1.910561821(299) gexp 2.0010415964(45) 2.0000470254(46) 1.99876727699(19) 1.99534895910(81) 1.910562058962(914) 注:gDirac代表Dirac方程计算的g因子值, Free QED代表自由(电子)QED效应贡献, BS-QED代表束缚态(电子)QED效应贡献, FNS代表核尺寸效应贡献, NR代表核反冲效应贡献, Hadronic代表强子效应贡献.12C5+,16O7+,28Si13数据来自于文献[10],20Ne9+的数据来自于文献[12],118Sn49+的数据来自于文献[13]. 28Si11+ 40Ca17+ 40Ar13 gDirac 1.9982547533 1.9964260253 0.66377545 QED 0.0023202857 (17) 0.0023216601(17) –0.0007682(4) e-e int. 0.000314 8098 (22) 0.0004542910 (24) 0.0006500(2) FNS + NR 0.0000000436 0.0000000662 –0.0000091(2) gtheo 2.000889 8924 (28) 1.9992020426 (29) 0.6636482 (5) gexp 2.00088988845 (14) 1.9992020405 (11) 0.66364845532(93) 注: QED代表经过屏蔽势修正后的束缚态QED效应, e-e int.代表电子-电子关联效应贡献;28Si11+与40Ca17+数据来自于文献[23],40Ar13数据来自于文献[24]. 效应贡献 $ {{\Delta }}g=g\left({}_{}{}^{20}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right)-g\left({}_{}{}^{22}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right) $
($ \times {10}^{-9} $)FNS 0.166(11) Recoil, non-QED 13.2827 Recoil, QED 0.0435 Recoil, (α/π)(me/M) –0.0103 Recoil, (me/M)2 –0.0077 Nuclear polarization 0.0001(3) Δgtotal theory 13.474(11) Δgexperiment 13.47524(53)stat(99)sys -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36]
计量
- 文章访问数:269
- PDF下载量:12
- 被引次数:0