\begin{document}$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $\end{document}和亚稳态\begin{document}$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{d}}^{1}} $\end{document}, \begin{document}$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{d}}^{1}} $\end{document}, \begin{document}$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{f}}^{1}} $\end{document}, \begin{document}$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{f}}^{1}} $\end{document}的电子碰撞单电离(EISI)截面. 为了考虑亚稳态离子对电离的贡献, 本文采用了3种模型来确定母离子束中处于长寿命能级的比值. 与Pindzola和Griffin (1997 Phys. Rev. A 56 1654)的理论结果和Stenke等(1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711)实验结果进行比较, 发现在考虑了亚稳态的贡献后本文结果与Stenke等的实验结果吻合得很好."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟

    Theoretical investigation of electron-impact ionization of W6+ion

    Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong
    PDF
    HTML
    导出引用
    • 采用细致能级扭曲波方法计算了W 6+离子基态 $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $ 和亚稳态 $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{d}}^{1}} $ , $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{d}}^{1}} $ , $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{f}}^{1}} $ , $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{f}}^{1}} $ 的电子碰撞单电离(EISI)截面. 为了考虑亚稳态离子对电离的贡献, 本文采用了3种模型来确定母离子束中处于长寿命能级的比值. 与Pindzola和Griffin ( 1997 Phys. Rev. A 561654 )的理论结果和Stenke等( 1995 J. Phys. B: At. Mol. Opt. Phys. 282711 )实验结果进行比较, 发现在考虑了亚稳态的贡献后本文结果与Stenke等的实验结果吻合得很好.
      Due to its unique characteristics, metal tungsten has been selected as the wall material for the tokamak magnetic confinement fusion device. The wall material directly interacts with the plasma for a long time, thus causing tungsten atoms and ions to be sputtered and ionized into different charge states, which then enter the tokamak device as plasma impurities. To ensure stable plasma combustion conditions, highly complex model is currently being used to evaluate the behavior of tungsten impurities and their influence on the tokamak plasma. This requires various high-precision atomic data for tungsten atoms and different ionized states of tungsten ions. Electron collision ionization, as a fundamental atomic physical process, is widely encountered in laboratory and astrophysical plasma environments. The parameters such as electron collision ionization cross-sections and rate coefficients are crucial for plasma radiation transport simulations and state diagnostics. Electron-impact single-ionization (EISI) cross sections of the ground state and metastable state for W 6+ions are calculated by using the level-to-level distorted-wave (LLDW) method. The contributions of direct ionization (DI) cross section and excited autoionization (EA) cross section to the total EISI cross section are primarily considered. Comparison of our calculation results with the experimental data from Stenke et al. (Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 282711 ) reveals that the EISI cross section considering only the ground state is significantly smaller than the experimental result. Therefore, it is imperative to take into account the contribution from the metastable state. To determine the fraction of ions in long-lived energy levels within the parent ion beam, three models are employed. Our results, which include the contribution of metastable states, accord well with the experimental results of Stenke et al. Compared with the theoretical calculation result of Pindzola et al. our calculaiton provides a more comprehensive understanding of the electron-impact single-ionization process for W 6+ions. The comparison is illustrated in the attached figure.
          通信作者:张登红,zhangdh@nwnu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 12364034)和甘肃省科技计划(批准号: 23YFFA0074)资助的课题.
          Corresponding author:Zhang Deng-Hong,zhangdh@nwnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 12364034) and the Science and Technology Project of Gansu Province, China (Grant No. 23YFFA0074).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

      • Configuration Method 5d 4f 5p 5s 4d
        5p6 FAC 118.28 120.19 166.43 334.88
        MCDF[28] 119.0 120.6 166.8 335.9
        NIST[29] 122.01$ \pm $0.06 122.11$ \pm $0.06
        5p55d1 FAC 81.85 120.45 122.14 164.24
        MCDF[28] 81.95 120.9 122.4 164.2
        下载: 导出CSV

        Configuration Index Level J Energy/eV Lifetimes/s Configuration Index Level J Energy/eV Lifetimes/s
        5p6 0 $ 5{{\mathrm{p}}}_{+}^{4} $ 0 0 30 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 4 78.81 8.70×10–1
        4f135d1 1 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 2 36.18 2.63×10–1 31 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 2 79.10 4.12×10–1
        2 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 3 37.44 2.11×10–1 32 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{-}^{1} $ 3 89.54 7.15×10–5
        3 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 4 37.72 3.38×10–1 33 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 3 89.61 7.18×10–5
        4 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 6 37.98 6.19×10–2 34 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 4 89.70 7.00×10–5
        5 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 2 38.29 2.59×10–2 35 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 2 90.00 6.78×10–5
        6 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 38.78 1.26×10–2 4f135f1 36 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 1 75.70 1.23×10+2
        7 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 3 38.94 2.03×10–2 37 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 2 75.72 1.48×10+1
        8 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 5 39.10 2.75×10–2 38 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 6 75.77 1.92×10+4
        9 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 39.22 1.10×10–2 39 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 3 75.91 4.47×10+1
        10 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 0 39.41 8.02×10–2 40 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 3 76.12 4.60×10+2
        11 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 2 39.53 5.97×10–3 41 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 4 76.13 6.76×10+1
        12 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 3 40.23 5.14×10–2 42 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 5 76.17 2.11×10+1
        13 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 5 40.52 4.06×10–3 43 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 2 76.18 2.97
        14 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 2 40.79 4.96×10–3 44 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 5 76.20 2.95×10+1
        15 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 3 41.23 4.39×10–3 45 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 6 76.22 1.67×10+1
        16 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 4 41.37 4.69×10–3 46 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 4 76.26 6.77×10+1
        5p55d1 17 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 1 39.18 3.16×10+1 47 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 0 76.81 3.36×10–2
        18 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 40.64 5.40×10–1 48 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 1 77.73 1.31×10–2
        19 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 40.69 1.17×10–2 49 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 1 78.01 1.19×10–2
        20 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 4 40.88 3.15 50 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 5 78.03 1.10×10–2
        21 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 41.76 1.11×10–2 51 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 6 78.11 1.06×10–2
        22 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 43.18 7.07×10–3 52 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 2 78.16 1.11×10–2
        23 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{-}^{1} $ 2 51.40 4.05×10–5 53 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.07×10–2
        24 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 2 52.83 4.30×10–5 54 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 3 78.40 1.10×10–2
        25 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 3 53.44 3.42×10–5 55 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 2 78.44 9.91×10–3
        5p55f1 26 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 2 77.81 2.43 56 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 4 78.47 1.07×10–2
        27 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 4 78.11 1.75×10+1 57 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 4 78.50 1.04×10–2
        28 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.13 58 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 5 78.50 1.06×10–2
        29 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 3 78.70 9.02×10–1 59 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 0 86.47 3.52×10–4
        下载: 导出CSV

        Configurations Energy range
        (Model 1)/eV
        Energy range
        (Model 2)/eV
        [0, 118] [118, 1000] [0, 118] [118, 1000]
        5p6 0 0.35 0 0.31
        4f135d1 0.40 0.10 0.35 0.10
        5p55d1 0.40 0.11 0.35 0.12
        5p55f1 0.10 0.22 0.15 0.23
        4f135f1 0.10 0.22 0.15 0.24
        下载: 导出CSV

        Level index Energy range/eV Level index Energy range/eV
        [0, 118] [118, 1000] [0, 118] [118, 1000]
        0 0 0.31000 30 0.00800 0.02300
        1 0.04468 0.00625 31 0.00800 0.02300
        2 0.04468 0.00625 32 0.00800 0.02300
        3 0.04468 0.00625 33 0.00800 0.02300
        4 0.04468 0.00625 34 0.00800 0.02300
        5 0.04469 0.00625 35 0.00800 0.02300
        6 0.04469 0.00625 36 0.00333 0.01000
        7 0.04469 0.00625 37 0.00333 0.01000
        8 0.04469 0.00625 38 0.00333 0.01000
        9 0.04469 0.00625 39 0.00333 0.01000
        10 0.04469 0.00625 40 0.00333 0.01000
        11 0.04469 0.00625 41 0.00333 0.01000
        12 0.04469 0.00625 42 0.00333 0.01000
        13 0.04469 0.00625 43 0.00333 0.01000
        14 0.04469 0.00625 44 0.00333 0.01000
        15 0.04469 0.00625 45 0.00333 0.01000
        16 0.04469 0.00625 46 0.00333 0.01000
        17 0.13880 0.01333 47 0.00333 0.01000
        18 0.13890 0.01333 48 0.00333 0.01000
        19 0.13890 0.01333 49 0.00333 0.01000
        20 0.13890 0.01333 50 0.00333 0.01000
        21 0.13890 0.01333 51 0.00333 0.01000
        22 0.13890 0.01333 52 0.00334 0.01000
        23 0.13890 0.01334 53 0.00334 0.01000
        24 0.13890 0.01334 54 0.00334 0.01000
        25 0.13890 0.01334 55 0.00334 0.01000
        26 0.00800 0.02300 56 0.00334 0.01000
        27 0.00800 0.02300 57 0.00334 0.01000
        28 0.00800 0.02300 58 0.00334 0.01000
        29 0.00800 0.02300 59 0.00334 0.01000
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

      • [1] 杜小娇, 魏龙, 孙羽, 胡水明.自由电子激光制备高强度亚稳态氦原子和类氦离子. 必威体育下载 , 2024, 73(15): 150201.doi:10.7498/aps.73.20240554
        [2] 周旭, 王川, 胡荣豪, 陶治豪, 邓小良, 梁亦寒, 李晓亚, 吕蒙, 祝文军.中高Z元素原子、离子的电子碰撞电离与激发截面快速计算方法. 必威体育下载 , 2024, 73(10): 103104.doi:10.7498/aps.73.20240213
        [3] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华.基于温度的亚稳态氧化石墨烯性能. 必威体育下载 , 2019, 68(15): 156501.doi:10.7498/aps.68.20190670
        [4] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞.纳米静态随机存储器低能质子单粒子翻转敏感性研究. 必威体育下载 , 2016, 65(6): 068501.doi:10.7498/aps.65.068501
        [5] 谭文静, 安竹, 朱敬军, 赵建玲, 刘慢天.10-25 keV电子致厚W,Au靶韧致辐射谱的测量. 必威体育下载 , 2016, 65(11): 113401.doi:10.7498/aps.65.113401
        [6] 敬明, 邓卫, 王昊, 季彦婕.基于跟车行为的双车道交通流元胞自动机模型. 必威体育下载 , 2012, 61(24): 244502.doi:10.7498/aps.61.244502
        [7] 郑亮, 马寿峰, 贾宁.基于驾驶员行为的元胞自动机模型研究. 必威体育下载 , 2010, 59(7): 4490-4498.doi:10.7498/aps.59.4490
        [8] 杨宁选, 蒋 军, 颉录有, 董晨钟.Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响. 必威体育下载 , 2008, 57(5): 2888-2894.doi:10.7498/aps.57.2888
        [9] 陈时东, 朱留华, 孔令江, 刘慕仁.优先随机慢化及预测间距对交通流的影响. 必威体育下载 , 2007, 56(5): 2517-2522.doi:10.7498/aps.56.2517
        [10] 乔秀梅, 张国平, 张覃鑫.模拟卢瑟福实验室的实验以检验理论模拟. 必威体育下载 , 2006, 55(3): 1181-1185.doi:10.7498/aps.55.1181
        [11] 王光军, 王 芳, 沈保根.LaFe11.4Al1.6中铁磁相与反铁磁相的双相共存. 必威体育下载 , 2005, 54(3): 1410-1414.doi:10.7498/aps.54.1410
        [12] 邝 华, 孔令江, 刘慕仁.考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 必威体育下载 , 2004, 53(12): 4138-4144.doi:10.7498/aps.53.4138
        [13] 金 毅, 潘佰良, 陈 钢, 陈 坤, 姚志欣.铜蒸气激光脉冲终止机理的数值研究. 必威体育下载 , 2004, 53(6): 1799-1803.doi:10.7498/aps.53.1799
        [14] 雷 丽, 薛 郁, 戴世强.交通流的一维元胞自动机敏感驾驶模型. 必威体育下载 , 2003, 52(9): 2121-2126.doi:10.7498/aps.52.2121
        [15] 齐静波, 陈重阳, 王炎森.类钠离子的电子碰撞电离截面. 必威体育下载 , 2001, 50(8): 1475-1480.doi:10.7498/aps.50.1475
        [16] 滕华国, 徐至展, 胡畏, 王炎森, 方渡飞.类钠铜离子的激发自电离. 必威体育下载 , 1996, 45(11): 1788-1792.doi:10.7498/aps.45.1788
        [17] 方泉玉, 蔡蔚, 沈智军, 李萍, 邹宇, 徐元光, 陈国新.电子与高荷电离子碰撞激发的扭曲波截面. 必威体育下载 , 1995, 44(3): 383-395.doi:10.7498/aps.44.383
        [18] 方渡飞, 王炎森, 胡畏, 高海滨, 陆福全.类硼离子的电子碰撞电离截面. 必威体育下载 , 1993, 42(1): 40-45.doi:10.7498/aps.42.40
        [19] 胡畏, 方渡飞, 王炎森, 陆福全, 汤家镛, 杨福家.包含激发-自电离的类锂离子的电子碰撞电离截面. 必威体育下载 , 1993, 42(9): 1416-1421.doi:10.7498/aps.42.1416
        [20] 沈俊锋, 徐云飞, 吴璧如, 郑幼凤, 陆杰, 王云仙.Yb的激光三步激发自电离谱. 必威体育下载 , 1992, 41(5): 732-739.doi:10.7498/aps.41.732
      计量
      • 文章访问数:757
      • PDF下载量:35
      • 被引次数:0
      出版历程
      • 收稿日期:2024-03-21
      • 修回日期:2024-04-24
      • 上网日期:2024-05-09
      • 刊出日期:2024-06-20

        返回文章
        返回
          Baidu
          map