搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

刘若水, 王利晨, 俞翔, 孙洋, 何诗悦, 赵同云, 沈保根

Research progress of magnetic anisotropy enhancement mechanism of high-performance La-Co co-substituted M-type permanent magnet ferrites

Liu Ruo-Shui, Wang Li-Chen, Yu Xiang, Sun Yang, He Shi-Yue, Zhao Tong-Yun, Shen Bao-Gen
PDF
HTML
导出引用
  • 自20世纪末以来, La-Co共替代的M型铁氧体备受关注, 已成为高性能永磁铁氧体的基础材料. Co 2+的未淬灭轨道矩被认为是增强铁氧体单轴各向异性的原因, 但其微观作用机理尚未完全解释清楚. 为了满足铁氧体材料日益增长的性能需求, 理解其磁各向异性增强机理至关重要, 并寻求从根源上的提升、低成本和高效的方法, 以制定开发高性能产品的指导原则. 本文综述了一系列研究工作, 旨在确定Co离子在晶格中的取代位置, 这是增强磁各向异性的关键. 这些研究为进一步提高永磁铁氧体的磁性能提供了重要的材料设计参考.
    La-Co co-substituted M-type ferrite, which was first reported at the end of the 20th century, as the cornerstone of high-performance permanent magnet ferrites, has received increasing attention from researchers around the world. The unquenched orbital moments of Co 2+play a pivotal role in enhancing the uniaxial anisotropy of M-type ferrites. However, a comprehensive understanding of its microscopic mechanism remains elusive. In order to meet the increasing performance requirements of ferrite materials, it is imperative to clarify the mechanism behind the enhancement of magnetic anisotropy, and at the same time seek the guiding principles that are helpful to develop high-performance product quickly and economically. But its mechanism at a microscopic level has not been explained. This review comprehensively analyzes various studies aiming at pinpointing the crystal sites of Co substitution within the lattice. These investigations including neutron diffraction, nuclear magnetic resonance, and Mössbauer spectroscopy can reveal the fundamental origins behind the enhancement of magnetic anisotropy, thereby providing valuable insights for material design strategies aiming at further enhancing the magnetic properties of permanent magnet ferrites. The exploration of co-substitution sites has yielded noteworthy findings. Through careful examination and analysis, researchers have discovered the complex interplay between Co ions and the lattice structure, revealing the mechanisms of enhanced magnetic anisotropy. The current mainstream view is that Co ions tend to occupy more than one site, namely the 4 f 1, 12 k, and 2 asites, all of which are located within the spinel lattice. However, there have also been differing viewpoints, implying that further exploration is needed to uncover the primary controlling factors influencing Co occupancy. It is worth noting that the identification of specific Co substitution sites, especially the spin-down tetrahedron 4 f 1, has achieved targeted modifications, ultimately fine-tuning the magnetic properties with remarkable precision. Furthermore, the reviewed research emphasizes the pivotal role of crystallographic engineering in tailoring the magnetic characteristics of ferrite materials. By strategically manipulating Co substitution, researchers have utilized the intrinsic properties of the lattice to amplify magnetic anisotropy, thereby unlocking new avenues for the advancement of permanent magnet ferrites. In conclusion, the collective findings outlined in this review herald a promising trajectory for the field of permanent magnet ferrites. With a detailed understanding of Co-substitution mechanisms, researchers are preparing to open up new avenues for developing next-generation ferrite materials with enhanced magnetic properties.
        通信作者:沈保根,shenbaogen@nimte.ac.cn
      • 基金项目:国家自然科学基金基础科学中心项目(批准号: 52088101)、浙江省“鲲鹏计划”和宁波市顶尖人才科技项目资助的课题.
        Corresponding author:Shen Bao-Gen,shenbaogen@nimte.ac.cn
      • Funds:Project supported by the Basic Science Center Program of the National Science Foundation of China (Grant No. 52088101), the Kunpeng Plan of Zhejiang Province, China, and the Ningbo Top Talent Program, Zhejiang, China.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

    • 公司 国家 牌号 Br/mT Hcb/(kA·m–1) HcJ/(kA·m–1) (BH)max/(kJ·m–3)
      TDK[23] 日本 FB13B 475 340 380 44.0
      FB14H 470 355 430 43.1
      日立金属[31] NMF-15 480 342 382 44.0
      横店东磁[27] 中国 DM4748 460 328 368 41.5
      北矿磁材[28] BMS-9.3 420 318 398 33.5
      江益磁材[29] JPM-12B 450 310 350 38.2
      龙磁科技[30] SM13N 450 278 298 38.1
      下载: 导出CSV

      元素 Wyckoff晶位 氧配位数 晶位形状 磁矩方向
      A 2d 12
      Fe 2a 6 八面体
      2b 5 双锥体
      4f1 4 四面体
      4f2 6 八面体
      12k 6 八面体
      下载: 导出CSV

      样品 作者和年份 国家 检测方法 Co2+占位
      2a 2b 4f1 4f2 12k
      多晶 Pieper等, 2002[100] 澳大利亚 57Fe-NMR
      Pieper等, 2002[101] 57Fe,139La和59Co-NMR
      Moral等, 2002[102] 法国 57Fe-Mössbauer, Raman
      Le Breton等, 2002[103] 57Fe-Mössbauer
      Wiesinger等, 2002[104] 澳大利亚 57Fe-Mössbauer,57Fe和59Co-NMR
      Lechevallier等, 2003[97] 法国 57Fe-Mössbauer
      Lechevallier等, 2004[105] 57Fe-Mössbauer
      Choi等, 2006[106] 韩国 57Fe-Mössbauer
      Kobayashi等, 2011[107] 日本 Neutron Diffraction, EXAFS, XMCD
      Kouřil, 2013[109] 捷克 57Fe-NMR
      Wu等, 2015[110] 中国 Raman, XPS
      Ohtsuka等, 2016[111] 日本 TEM-EDXS
      Mahadevan等, 2020[112] 印度 57Fe-Mössbauer, Raman
      单晶 Nagasawa等, 2016[113] 日本 57Fe-Mössbauer
      Oura等, 2018[114] 57Fe-Mössbauer, XES
      Sakai等, 2018[115] 57Fe和59Co-NMR
      Nakamura等, 2019[116] 59Co-NMR
      Nagasawa等, 2020[117] 外场作用下的57Fe-Mössbauer
      下载: 导出CSV

      样品 制备方法 替代浓度 5 K时的磁各向异性场HA/kOe
      x y
      Sr1–xLaxFe12–yCoyO19[140] Na2O助熔剂法生长的单晶 0 0 17.50
      0.055 0.032 17.22
      0.139 0.077 19.46
      0.242 0.108 18.62
      0.289 0.152 21.57
      0.367 0.212 24.36
      0.511 0.161 22.17
      0.472 0.266 25.57
      Sr1–xLaxFe12–yCoyO19[142] 高氧压移动溶剂浮区法生长的单晶 0.2 0.2 21.77
      0.4 0.4 27.96
      Sr1–xLaxFe12–yCoyO19[143] 高氧压固相反应法合成的多晶 0.21 0.21 21.18
      0.30 0.30 21.76
      0.39 0.39 24.41
      0.41 0.41 27.06
      0.72 0.72 34.12
      0.93 0.93 42.35
      1.00 1.00 56.76
      Ca13–nxLaxFenyCoyO19
      (n= 11.87—11.93,
      根据不同Co替代量
      而改变)[144]
      CaO助熔剂法生长的单晶 0.52 0.07 15.26
      0.52 0.10 17.35
      0.56 0.17 23.15
      0.48 0.16 25.65
      0.59 0.27 28.31
      0.37 0.17 26.89
      0.56 0.36 31.54
      NaaxLaxFenyCoyO19(a= 0.25—0.41,
      n= 11.84—11.97, 根据不同Co
      替代量而改变)[145]
      Na2O助熔剂法生长的单晶 0.82 0.12 25.72
      0.79 0.21 25.61
      0.83 0.31 29.61
      下载: 导出CSV

      模型 2a 2b 4f1 4f2 12k
      1 1.00
      2 1.00
      3 0.35 0.65
      4 0.31 0.69
      5 0.88 0.12
      6 0.47 0.53
      7 0.22 0.38 0.40
      下载: 导出CSV

      类别 高自旋 低自旋
      八面体 四面体 双锥体
      Co2+(d7) 3/2 1/2 1/2
      Co3+(d6) 2 0 1 1
      下载: 导出CSV

      记号 中心频率/MHz 局域场大小/T 相对丰度
      S1 86 8.6 0.73
      S2 307 30.6 0.16
      S3 386 38.5 0.11
      S4 529 52.7 <0.002
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

    • [1] 俱海浪, 向萍萍, 王伟, 李宝河.MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 必威体育下载 , 2015, 64(19): 197501.doi:10.7498/aps.64.197501
      [2] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华.Co/Ni多层膜垂直磁各向异性的研究. 必威体育下载 , 2015, 64(9): 097501.doi:10.7498/aps.64.097501
      [3] 郝延明, 王玲玲, 严达利, 安力群.电弧炉制备的Sm2Fe17-xCrx化合物的结构与磁性. 必威体育下载 , 2009, 58(10): 7222-7226.doi:10.7498/aps.58.7222
      [4] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺.Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 必威体育下载 , 2007, 56(2): 1121-1126.doi:10.7498/aps.56.1121
      [5] 王文全, 徐世峰, 徐钦英, 张文梁, 陈东风.(Nd1-xGdx)3Fe27.31Ti1.69化合物的结构和磁性. 必威体育下载 , 2006, 55(7): 3531-3535.doi:10.7498/aps.55.3531
      [6] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明.(Nd1-xErx)3Fe25Cr4.0(0≤x≤1.0) 化合物的结构与磁性. 必威体育下载 , 2005, 54(5): 2176-2182.doi:10.7498/aps.54.2176
      [7] 郭光华, 张海贝.化合物HoMn6Sn6的磁晶各向异性及自旋重取向相变研究. 必威体育下载 , 2005, 54(12): 5879-5883.doi:10.7498/aps.54.5879
      [8] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao.纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究. 必威体育下载 , 2004, 53(7): 2352-2356.doi:10.7498/aps.53.2352
      [9] 王文全, 闫 羽, 王向群, 王学凤, 金汉民.(Nd1-xErx)3Fe273Ti17化合物的结构与磁性. 必威体育下载 , 2003, 52(3): 641-646.doi:10.7498/aps.52.641
      [10] 王文全, 闫 羽, 王学凤, 苏 峰, 王向群, 金汉民.RCo12-xTix(R=Y,Sm)化合物的结构与磁性研究. 必威体育下载 , 2003, 52(1): 150-155.doi:10.7498/aps.52.150
      [11] 王文全, 闫 羽, 王向群, 王学凤, 苏 峰, 金汉民.Gd3Co29-xCrx新相化合物的结构与磁性. 必威体育下载 , 2003, 52(3): 647-651.doi:10.7498/aps.52.647
      [12] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为.纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 必威体育下载 , 2002, 51(5): 1128-1132.doi:10.7498/aps.51.1128
      [13] 李安华, 董生智, 李卫.烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 必威体育下载 , 2002, 51(10): 2320-2324.doi:10.7498/aps.51.2320
      [14] 冯全源.高取向度的毫米波锶钙六角多晶铁氧体. 必威体育下载 , 2002, 51(11): 2612-2616.doi:10.7498/aps.51.2612
      [15] 王维, 张锡娟, 杨翠红, 成海英.强磁场下Er2Ga5O12的磁晶各向异性. 必威体育下载 , 2002, 51(12): 2846-2848.doi:10.7498/aps.51.2846
      [16] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民.3∶29型Gd3(Fe1-xCox)29-yCry化合物的成相与结构. 必威体育下载 , 2001, 50(8): 1534-1539.doi:10.7498/aps.50.1534
      [17] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民.Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性. 必威体育下载 , 2001, 50(4): 752-757.doi:10.7498/aps.50.752
      [18] 胡社军, 特古斯, 魏兴钊, 张雷, 曾德长, 刘正义, F.R.deBoer, K.H.J.Buschow.Ho2(Co,Si)17化合物的结构与磁晶各向异性. 必威体育下载 , 2000, 49(2): 355-360.doi:10.7498/aps.49.355
      [19] 关鹏, 刘宜华, 郭贻诚.Co-Zr非晶薄膜的磁感生各向异性. 必威体育下载 , 1989, 38(12): 2029-2033.doi:10.7498/aps.38.2029
      [20] 徐游, 杨桂林, 蔡衡, 翟宏如.W型六角铁氧体的磁晶各向异性. 必威体育下载 , 1985, 34(7): 901-907.doi:10.7498/aps.34.901
    计量
    • 文章访问数:1214
    • PDF下载量:98
    • 被引次数:0
    出版历程
    • 收稿日期:2024-01-29
    • 修回日期:2024-04-17
    • 上网日期:2024-04-28
    • 刊出日期:2024-06-20

      返回文章
      返回
        Baidu
        map