搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    严豪, 丁留贯, 封莉, 顾斌

    Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts

    Yan Hao, Ding Liu-Guan, Feng Li, Gu Bin
    PDF
    HTML
    导出引用
    • 本文选取了第24太阳活动周2010年1月至2014年9月期间的快速、大角宽日冕物质抛射(CME)事件, 结合不同约束条件下Richardson (2014) 太阳高能粒子(SEP)强度经验模型输出结果, 分析了CME属性、先行CME (pre-CME)、II型射电暴等观测特征对SEP强度的影响, 探讨了SEP事件的产生及其强度与这些特征的关系. 主要结论如下: 1) 快速CME前13 h内是否存在pre-CME对模型预测效果和快速CME是否产生SEP事件有明显影响, 但pre-CME的数量对模型输出结果没有明显改善. 2) 相比于无II型射电暴伴随的快速CME而言, 伴随II型射电暴的CME爆发产生SEP事件的误报占比明显更低(42%), 以此为约束条件, 可更加突显大SEP事件(如峰值≥0.01 pfu/MeV)的模型预测值与观测值的关联; 如果考虑射电增强, 则SEP事件的误报占比可进一步下降至29.4%, 模型预测效果显著提升. 3) II型射电暴的起始频率和结束频率对误报占比的影响不大, 以此作为条件约束对模型预测效果提升不明显. 4) 如考虑II型射电暴的细分类型作为模型约束条件, 伴随多波段II型射电暴的CME比单一波段事件具有更好的模型预测效果, 如m-DH-km II型射电暴事件, 具有较低的误报占比(35.4%), 准确率较高. 研究结果显示, 除了CME的速度和角宽参数外, pre-CME、II型射电暴及其增强、多波段类型等特征作为CME产生SEP事件的约束条件, SEP预测强度与观测强度具有较好的一致性, 可以获得较优的模型预测效果. 这也进一步表明了伴随有pre-CME、多波段II型射电暴及其增强的快速大角宽CME更容易产生SEP事件, 这些特征可作为SEP-rich类CME的辨别信号.
      Based on the multiple-vantage observations of STEREO, SOHO, wind and other spacecraft, the fast and wide coronal mass ejections (CME) during the 24th solar cycle from January 2010 to September 2014 are selected in this paper. Using the outputs of Richardson’s (2014) empirical model of solar energetic particle (SEP) intensity under different conditions, the effects of its associations such as CME, pre-CME, and type II radio bursts, on SEP intensity are analyzed, and the relationship between SEP event and these characteristics is also discussed. The main conclusions are as follows. 1) The presence or absence of pre-CME within 13 h before fast CME significantly improves the model prediction effect and has a significant influence on whether fast CME produces SEP event. Compared with the events without pre-CMEs, the events with pre-CMEs have a low proportion of false alarms (FR: 47.7% vs.70%). However, the number of pre-CMEs does not improve the model output. 2) CMEs with type-II radio bursts have significantly lower FR to generate SEP events than fast CMEs without type-II radio bursts (42% vs.68%). And selecting type-II radio bursts as a constraint will filter out some small/weak SEP events, the relationship between model predictions and observations especially for large SEP events (e.g. I p≥ 0.01 pfu/MeV) will stand out. Moreover, if the type-II radio enhancement is taken into account, FR can be further reduced to 29.4%, and the proportion of hits can be further increased (HR: 48.5%), and the model prediction is significantly improved. 3) The larger the start frequency of type II radio bursts, the smaller the end frequency is, and FR decreases slightly, but at the same time, a large number of SEP events are excluded by this condition, and the results show that the constraints on the start/end frequency of type-II radio bursts do not improve the model predictions distinctly. 4) If the sub-classification of type-II radio bursts is considered as the model constraint, the CMEs associated with multi-band type-II radio bursts have better model predictions than those with single-band events. For example, m-DH-km type-II radio bursts have lower FR (35.4%) and higher HR (48%), and the accuracy of empirical model is higher. In summary, we find that in addition to the velocity and angular width of CME, the associations of pre-CME, type II radio bursts and their enhancement, and multi-band sub-classification are the favorable conditions for CME to generate SEP events. The SEP intensities obtained by the empirical model have better consistency with the observations, and better predictions can be obtained. This investigation indicates that SEP events are more likely generated by fast and wide CMEs accompanied by pre-CMEs, multi-band type II radio bursts and their enhancements, which seem to serve as discriminative signal for SEP-rich and SEP-poor CMEs.
          通信作者:丁留贯,dlg@nuist.edu.cn
        • 基金项目:国家自然科学基金 (批准号: 42274215)、江苏省高校“青蓝工程”和江苏省“333”高层次人才培养工程资助的课题.
          Corresponding author:Ding Liu-Guan,dlg@nuist.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 42274215), the “Qing Lan” Program of Jiangsu Province, China, and the “333” High-Level Talent Cultivation Project of Jiangsu Province, China.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

      • 强度阈值/
        (pfu⋅MeV–1)
        无II型射电暴(188) 有II型射电暴(317)
        $ {10}^{-2} $ 68.1% 42.0%
        $ {10}^{-3} $ 71.8% 32.8%
        $ {10}^{-4} $ 80.9% 36.6%
        下载: 导出CSV

        II型射电
        暴类型
        事件数量 数量
        占比/%
        误报
        占比/%
        击中
        占比/%
        metric 6 1.9 83.3 0
        DH 39 12.3 56.4 12.8
        km 6 1.9 50 33.3
        m-DH 32 10.1 43.8 25.0
        DH-km 107 33.8 41.1 33.6
        m-DH-km 127 40.1 35.4 48.0
        下载: 导出CSV

        条件 total Hits FA Cr Misses FAR POD BIAS POFD HK ACC
        完美得分 0 1 1 0 1 1
        CME速度≥900 km/s, 角宽≥60°(对照组) 505 119 261 116 9 0.69 0.93 2.97 0.69 0.24 0.47
        无pre-CME 90 6 63 19 2 0.91 0.75 8.63 0.77 -0.02 0.28
        有pre-CME 415 113 198 97 7 0.64 0.94 2.59 0.67 0.27 0.51
        无II型射电暴 188 7 128 53 0 0.95 1.00 19.29 0.71 0.29 0.32
        有II型射电暴 317 112 133 63 9 0.54 0.93 2.02 0.68 0.25 0.55
        无射电增强 181 46 93 38 4 0.67 0.92 2.78 0.71 0.21 0.46
        有射电增强 136 66 40 25 5 0.38 0.93 1.49 0.62 0.31 0.67
        $ {f}_{{\mathrm{s}}{\mathrm{t}}} $<140 MHz 279 99 118 55 7 0.54 0.93 2.05 0.68 0.25 0.55
        $ {f}_{{\mathrm{s}}{\mathrm{t}}} $≥140 MHz 38 13 15 8 2 0.54 0.87 1.87 0.65 0.21 0.55
        $ {f}_{{\mathrm{e}}{\mathrm{d}}} $ < 0.1 MHz 45 22 17 4 2 0.44 0.92 1.63 0.81 0.11 0.58
        $ {f}_{{\mathrm{e}}{\mathrm{d}}} $ ≥ 0.1 MHz 272 90 116 59 7 0.56 0.93 2.08 0.66 0.27 0.55
        m-DH-km II型射电暴 127 61 45 18 3 0.42 0.95 1.66 0.71 0.24 0.62
        DH-km II型射电暴 107 36 44 22 5 0.55 0.88 1.95 0.66 0.22 0.54
        m-DH-km + DH-km (行星际II型射电暴) 234 97 89 40 8 0.48 0.92 1.77 0.69 0.23 0.59
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

      • [1] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越.太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 必威体育下载 , 2022, 71(15): 159501.doi:10.7498/aps.71.20220084
        [2] 朱聪, 丁留贯, 周坤论, 钱天麒.II型射电暴分类及其与太阳高能粒子事件的关系. 必威体育下载 , 2021, 70(9): 099601.doi:10.7498/aps.70.20201800
        [3] 周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉.II型射电暴射电增强与太阳高能粒子事件关系的统计. 必威体育下载 , 2020, 69(16): 169601.doi:10.7498/aps.69.20200041
        [4] 霍志胜, 蒲红斌, 李维勤.高能透射电子束照射聚合物薄膜的带电效应. 必威体育下载 , 2019, 68(23): 230201.doi:10.7498/aps.68.20191112
        [5] 周坤论, 丁留贯, 王智伟, 封莉.基于射电观测的日冕物质抛射驱动激波的统计特征研究. 必威体育下载 , 2019, 68(13): 139601.doi:10.7498/aps.68.20190223
        [6] 倪素兰, 顾斌, 韩智伊.行星际日冕物质抛射引起福布斯下降的一维随机微分模拟. 必威体育下载 , 2017, 66(13): 139601.doi:10.7498/aps.66.139601
        [7] 胡帅, 高太长, 李浩, 程天际, 刘磊, 黄威, 江诗阳.低太阳高度角条件下的天空偏振模式模拟及大气折射影响研究. 必威体育下载 , 2016, 65(1): 014203.doi:10.7498/aps.65.014203
        [8] 周双, 冯勇, 吴文渊.太阳高纬和低纬活动现象的混沌与分形特征. 必威体育下载 , 2015, 64(24): 249601.doi:10.7498/aps.64.249601
        [9] 陈海军, 张耀文.空间调制作用下Bessel型光晶格中物质波孤立子的稳定性. 必威体育下载 , 2014, 63(22): 220303.doi:10.7498/aps.63.220303
        [10] 陆文, 严卫, 艾未华, 施健康.星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验. 必威体育下载 , 2013, 62(7): 078403.doi:10.7498/aps.62.078403
        [11] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋.遮蔽效应对抛射沉积模型标度性质的影响. 必威体育下载 , 2012, 61(2): 028102.doi:10.7498/aps.61.028102
        [12] 欧阳建明, 马燕云, 邵福球, 邹德滨.高能电子碰撞电离对高空核爆炸辐射电离的影响. 必威体育下载 , 2012, 61(21): 212802.doi:10.7498/aps.61.212802
        [13] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋.含遮蔽抛射沉积模型的有限尺寸效应. 必威体育下载 , 2011, 60(3): 038102.doi:10.7498/aps.60.038102
        [14] 杨天丽, 杨朝文, 迮仁德, 熊宗华, 郝樊华.高能α粒子轰击Yb箔制备178Hfm2核素的初步研究. 必威体育下载 , 2010, 59(12): 8465-8470.doi:10.7498/aps.59.8465
        [15] 肖中银, 王廷云, 罗文芸, 王子华.高能粒子辐照二氧化硅玻璃E′色心形成机理研究. 必威体育下载 , 2008, 57(4): 2273-2277.doi:10.7498/aps.57.2273
        [16] 王 晶, 冯学尚.日冕物质抛射引起地磁扰动的分类预报. 必威体育下载 , 2007, 56(4): 2466-2474.doi:10.7498/aps.56.2466
        [17] 陈雁萍, R. J. HASTIE, 柯孚久, 蔡诗东, 陈骝.高能俘获粒子对内扭曲模的稳定效应. 必威体育下载 , 1988, 37(4): 546-556.doi:10.7498/aps.37.546
        [18] 罗辽复, 陆埮.高能正负电子对的湮没与超窄共振ψ粒子的作用. 必威体育下载 , 1975, 24(2): 145-150.doi:10.7498/aps.24.145
        [19] 李正武.磁镜系统内高能粒子的注入和积聚. 必威体育下载 , 1962, 18(11): 586-593.doi:10.7498/aps.18.586
        [20] 王璈, 李鹤年, 简而智, 萧健.高能带电粒子直接产生电子对. 必威体育下载 , 1961, 17(6): 263-272.doi:10.7498/aps.17.263
      计量
      • 文章访问数:1099
      • PDF下载量:31
      • 被引次数:0
      出版历程
      • 收稿日期:2023-11-26
      • 修回日期:2024-01-19
      • 上网日期:2024-01-23
      • 刊出日期:2024-04-05

        返回文章
        返回
          Baidu
          map