-
采用提拉法生长出了钕掺杂钪酸钆晶体(Nd 3+:GdScO 3), 通过低温吸收光谱和室温发射光谱, 对其中Nd 3+的实验能级进行分析指认, 确定了Nd 3+:GdScO 3的66个实验Stark能级, 拟合了其自由离子参数和晶体场参数, 拟合均方根误差为13.17 cm –1. 与Nd 3+:YAP和Nd 3+:YAG相比, Nd 3+:GdScO 3的晶场强度较弱. 弱的晶体场强度有可能是Nd 3+:GdScO 3晶体具有优良激光特性的原因之一. 本文数据集可在https://www.doi.org/10.57760/sciencedb.15702中访问获取.
-
关键词:
- Nd3+:GdScO3晶体/
- 晶体场参数/
- 能级拟合
Gadolinium scandate (GdScO 3) crystal has a perovskite structure, belonging to an orthogonal system, and its space group is Pnma(No. 62). Due to the disordered distributions of Sc 3+and Gd 3+ions, different cation sites can be replaced by doped ions, which indicates that GdScO 3crystal has a high tolerance for structural distortion. Compared with other oxide crystals, GdScO 3crystal has lower phonon energy of about 452 cm –1, which reduces non-radiative relaxation between adjacent energy levels and has strong thermal stability. In addition, GdScO 3crystal birefringence is large, and as a laser material, it can eliminate the adverse effects caused by thermal birefringence, such as thermal depolarization loss. As an active ion, Nd 3+(4f 3) is an ideal four-level system. Therefore, Nd 3+:GdScO 3crystal has a broad application prospect as a laser crystal matrix material. However, the study of Nd 3+:GdScO 3crystal field energy level fitting and crystal field parameters has not been reported to the authors’ knowledge. Neodymium-doped gadolinium scandiate (Nd 3+:GdScO 3) crystal is grown by the Czochralski method. The absorption spectrum in a range of 250—2650 nm is tested at a low temperature (8 K), and the emission spectrum at room temperature is also tested. The experimental energy levels of Nd 3+are analyzed and 66 experimental Stark levels of Nd 3+:GdScO 3are identified. For the doped trivalent rare earth ion crystals, the energy level structure of rare earth ion is related to its luminescence characteristics, so it is necessary to study its energy level structure. In recent decades, parametric crystal field models have been widely applied to various rare-earth ion doped garnet crystals. The parametric model is used to analyze and fit the crystal field energy levels of Nd 3+doped orthogonal GdScO 3. The fitted root mean square error is 13.17 cm –1. The resulting free ion parameters and crystal field parameters are calculated and analyzed, and the crystal field intensity is calculated. Fitting results show that the parameterized Stark levels are in good agreement with the experimental spectra, and the results are ideal. Comparing with Nd 3+:YAP and Nd 3+:YAG, the crystal field strength of Nd 3+:GdScO 3is weak. The weak crystal field strength may be one of the reasons for the excellent laser properties of Nd 3+:GdScO 3crystals. But its microscopic mechanism needs further studying. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.15702.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] -
2S+1L Nd3+:GdScO3的能级/cm–1 4I9/2 0, 95, 156, 384.9, 600 4I11/2 2081.9, 2193.7, 2376.8 4I13/2 3888, 3980, 4024.8, 4137.5, 4182.4, 4253.2 4I15/2 5798, 5917.6, 5975.9, 6108, 6154.6,
6251.6, 6374, 6438.34F3/2 11410.3 2H9/2+4F5/2 12315.2, 12410, 12459.5, 12554.9,
12578.6, 12634.2, 12706.5, 12771.44F7/2+4S3/2 13234.5, 13326.2, 13422.8, 13462.6 4F9/2 14547.6, 14641.3, 14723.2, 14814.8 2H(2)11/2 15822.8, 15949 4G5/2+2G7/2 16801.1, 16931, 17027, 17170.3, 17283.1, 4G7/2 18789.9, 18946.6 4G7/2+2K13/2 19245.6, 19394.9, 19561.8, 19723.9 2D3/2+4G11/2 20929.3, 21079.3, 21186.4 2G9/2+2K15/2 21395, 21607.6, 21805.5 2P1/2 23041.5 2D(1)5/2 23463.2 2P3/2 25974 4D3/2+4D5/2+2I11/2 27685.5, 28264.6, 28885 2I13/2+2L15/2+4D7/2 30012, 30303, 31250, 31948.9 2H(1)9/2 32531, 32916.4 2D5/2 33783.8 2F(2)5/2 37735.8 2F(2)7/2 39308.2 2S+1LJ Nd3+:GdScO3的能级 Ecalc Eexp ΔE/cm–1 4I9/2 –6.16 0 6.16 94.83 95 0.16 171.56 156 –15.57 373.37 384.9 11.52 613.97 600 –13.97 4I11/2 2083.40 2081.9 –1.5 2178.01 2193.7 15.69 2357.63 2376.8 19.17 4I13/2 3920.90 3888.0 –32.9 3982.08 3980.0 –2.08 4028.62 4024.8 –3.83 4141.91 4137.5 –4.42 4183.76 4182.4 –1.36 4274.03 4253.2 –20.83 4I15/2 5782.82 5798.0 15.18 5904.53 5917.6 13.06 5975.49 5975.9 0.40 6168.43 6154.6 –13.84 6249.49 6251.6 2.10 6350.18 6374.0 23.81 4F3/2 11398.61 11410.3 11.69 2H(2)9/2+4F5/2 12335.88 12315.2 –20.69 12408.68 12410.0 1.31 12471.35 12459.5 –11.86 12543.56 12554.9 11.33 12592.03 12578.6 –13.44 12625.69 12634.2 8.51 2H(2)9/2 12684.20 12706.5 22.29 12766.74 12771.4 4.65 4F7/2 13325.10 13326.2 1.10 13432.37 13422.8 –9.58 4S3/2 13462.96 13462.6 –0.37 4F9/2 14650.75 14641.3 –9.45 14717.67 14723.2 5.52 14810.44 14814.8 4.35 2H(2)11/2 15824.13 15822.8 –1.33 15959.86 15949.0 –10.87 4G5/2 16940.85 16931.0 –9.85 17018.99 17027.0 8.00 4G7/2 17275.08 17283.1 8.02 18788.91 18789.9 0.99 18941.16 18946.6 5.43 2K13/2 19261.72 19245.6 –16.13 19732.11 19723.9 –8.22 4G9/2 19389.21 19394.9 5.69 19549.45 19561.8 12.34 2G(1)9/2+2D(1)3/2 20930.64 20929.3 –1.34 2G(1)9/2+2K15/2 21059.54 21079.3 19.76 21409.62 21395.0 –14.67 4G11/2 21172.41 21186.4 13.99 21613.10 21607.6 –5.51 2K15/2 21409.62 21394.9 –14.67 4G11/2+2K15/2 21817.38 21805.5 –11.89 2P1/2 23040.12 23041.5 1.37 2P3/2 25970.86 25974.0 3.14 4D3/2+4D5/2 27683.17 27685.5 2.33 4D5/2 28261.54 28264.6 3.05 2I11/2 28882.52 28885.0 2.48 2I13/2 30007.88 30012.0 4.11 4D7/2 30308.17 30303.0 –5.17 2L17/2 31241.68 31250.0 8.31 31947.28 31948.9 3.02 2H(1)9/2 32527.98 32531.0 4.89 2D(2)3/2 32928.03 32916.4 –11.64 2D(2)5/2+2H(1)11/2 33789.05 33783.8 –5.26 2F(2)5/2 37739.95 37735.8 –4.15 2F(2)7/2 39308.14 39308.2 0.05 参数 Nd3+:GdScO3
/cm–1Nd3+:YAG
/cm–1Nd3+:YAP
/cm–1$ {E_{{\text{avg}}}} $ 24041 24097 24119 $ {F^2} $ 70382 70845 70925 $ {F^4} $ 51265 51235 50794 $ {F^6} $ 34639 34717 35424 $ \xi $ 883 876 875 $ \alpha $ 21.1 21.1 23 $ \beta $ –645 –645 –691 $ \gamma $ 1660 1660 1690 $ {T^2} $ 482 345 458 $ {T^3} $ 13 46 38.4 $ {T^4} $ 87 61 75.8 $ {T^6} $ –249 –272 –290 $ {T^7} $ 560 318 237 $ {T^8} $ 400 271 496 $ M $ 1.62 1.62 1.9 $ P $ 107 107 206 $ B_0^2 $ –737 –405 –154 $ B_2^2 $ 539+[0i] 179 578 $ B_0^4 $ –789 –2823 –541 $ B_2^4 $ 1058 +30i 540 967+24i $ B_4^4 $ –9+788i 1239 –309+608i $ B_0^6 $ –550 955 –671 $ B_2^6 $ 695–22i –390 512–18i $ B_4^6 $ 1262+[0i] 1610 1611+[0i] $ B_6^6 $ 49+174i –281 0+132i $ \sigma $ 13.17 31.1 15.6 Nv 2709 4215 3406 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
计量
- 文章访问数:1602
- PDF下载量:62
- 被引次数:0