-
光声泵浦成像是一种新型的高特异性光声分子影像技术. 它可以避免常规光声成像中来自血液等强背景信号的干扰, 实现组织中微弱目标分子的探测, 并通过对泵浦-探测激光间的延时扫描, 获得组织中的氧分压分布. 本文采用亚甲基蓝作为分子探针, 通过对血红蛋白溶液中氧分压变化的监测, 开展了对光声泵浦成像的定量分析研究. 本文采用高斯噪声模型, 获得了三重态差分信号稳定性随着平均次数变化的规律, 并在此基础上对氧分压测量的误差进行了分析. 结果表明, 在平均次数为200次条件下, 氧分压在300—550 mmHg (1 mmHg = 133 Pa)区间内, 所搭建系统的检测精度优于33 mmHg. 本研究将对光声泵浦成像技术的进一步发展和应用起到重要的指导作用.Pump-probe-based photoacoustic imaging is an innovative technique for high-specificity molecular imaging in deep tissues. Compared with conventional photoacoustic imaging, this method effectively eliminates the interference from blood signal and other background signal, enabling the detection of subtle target molecules. Additionally, the manipulating of the time delay between the pump laser and probe laser can facilitate non-invasive mapping of oxygen partial pressure distribution within tissues. To quantify the photoacoustic pump-probe imaging, we use methylene blue as the molecular probe to monitor changes in oxygen partial pressure within a hemoglobin solution. Utilizing a Gaussian noise model, we investigate the relationship between the stability of the triplet-state difference signal and the average number, and also evaluate the error associated with measuring oxygen partial pressure. The results demonstrate that the detection accuracy of the system is better than 33 mmHg (1 mmHg = 133 Pa) in the oxygen partial pressure range of about 300 to 550 mmHg after 200 times of averaging. This research will play a significant role in guiding the further advancement and application of pump-probe-based photoacoustic imaging technology.
-
Keywords:
- pump-probe-based photoacoustic imaging/
- oxygen partial pressure/
- transient triplet-differential method/
- quantitative analysis
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
计量
- 文章访问数:1778
- PDF下载量:48
- 被引次数:0