搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊

Research progress of ultra-high spatiotemporally resolved microscopy

Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun
PDF
HTML
导出引用
  • 高分辨显微成像技术为人们推开了探索微观世界的大门, 而飞秒激光技术又为人们提供了一把探测超快物理/化学现象的尺子. 将这两者结合, 发展既有超高空间分辨、又有超快时间分辨的新型显微成像技术, 对于人们探索极小时空尺度下新的科学现象和规律有非常重要的意义. 本文综述了目前国际上主要超高时空分辨显微成像技术的基本原理和特点, 并介绍了其在光电材料与器件表征、飞秒激光微加工监测、表面等离激元动力学表征等方面的最新应用进展. 超高时空分辨显微成像技术的发展, 不仅推动了光学显微成像领域的进步, 也为精密加工、二维材料动力学、光电器件设计与表征等领域提供了关键技术手段, 具有广阔的应用前景.
    High-resolution microscopy has opened the door to the exploration of the micro-world, while femtosecond laser has provided a measurement method for detecting ultrafast physical/chemical phenomena. Combination of these two techniques can produce new microscopic techniques with both ultra-high spatial resolution and ultra-fast temporal resolution, and thus has great importance in exploring new scientific phenomena and mechanisms on an extremely small spatial scale and temporal scale. This paper reviews the basic principles and properties of main microscopic techniques with ultra-high temporal resolution and spatial resolution, and introduces the latest research progress of their applications in various fields such as characterizing optoelectronic materials and devices, monitoring femtosecond laser micromachining, and detecting surface plasmon excitation dynamics. In order to conduct these researches systematically, we group these techniques based on time dimension and space dimension, including the near-field multi-pulse imaging techniques, the far-field multi-pulse imaging techniques, and the far-field single-pulse imaging techniques. In Section 2, we introduce the principles and characteristics of the ultra-high spatiotemporally resolved microscopic techniques. The near-field multi-pulse spatiotemporally microscopic techniques based on nano-probe are described in Subsection 2.1, in which is shown the combination of common near-field imaging techniques such as atomic force microscopy (AFM), near-field scanning optical microscopy (NSOM), scanning tunneling microscope (STM), and the ultra-fast temporal detection of pump-probe technique. In Subsection 2.2, we introduce the far-field multi-pulse spatiotemporal microscopic techniques. In contrast to near-field cases, the far-field spatiotemporal microscopic techniques have lower spatial resolution but possess more advantages of being non-invasive and non-contact, wider field of view, and faster imaging speed. In Subsection 2.3 we introduce the far-field single-pulse spatiotemporal microscopic techniques, in which is used a single ultrafast light pulse to capture dynamic processes at different moments in time, thereby enabling real-time imaging of ultrafast phenomena. In Section 3 , the advances in the application of the ultra-high spatiotemporal resolved microscopic techniques are introduced in many frontier areas, including the monitoring of femtosecond laser micromachining in Subsection 3.1, the detection of optoelectronic materials/devices in Subsection 3.2, and the characterization of surface plasmon dynamics in Subsection 3.3. Finally, in Section 4, we summarize the features of all above-mentioned spatiotemporal microscopic techniques in a table, including the spatial resolution and temporal resolution, advantages and disadvantages of each technique, and we also provide an outlook on future development trend in this research field. Looking forward to the future, ultra-high spatiotemporally resolved microscopy will develop rapidly toward the goal of "smaller, faster, smarter and more extensive". Its development not only promotes the research of the microscopy technology, but also provides a powerful tool for various practical applications such as precision machining, two-dimensional material dynamics, optoelectronic device design and characterization.
        通信作者:袁小聪,xcyuan@szu.edu.cn; 闵长俊,cjmin@szu.edu.cn
      • 基金项目:广东省基础与应用基础研究重大项目(批准号: 2020B0301030009)、国家自然科学基金 (批准号: 62175157, 61935013, 61975128)和深圳市科技计划(批准号: RCJC20210609103232046, JCYJ20210324120403011) 资助的课题.
        Corresponding author:Yuan Xiao-Cong,xcyuan@szu.edu.cn; Min Chang-Jun,cjmin@szu.edu.cn
      • Funds:Project supported by the Guangdong Provincial Major Project of Basic and Applied Basic Research, China (Grant No. 2020B0301030009), the National Natural Science Foundation of China (Grant Nos. 62175157, 61935013, 61975128), and the Science and Technology Planning Project of Shenzhen, China (Grant Nos. RCJC20210609103232046, JCYJ20210324120403011)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

    • 技术手段 空间分辨率 时间分辨率 优点 缺点
      近场
      多脉冲
      超快NSOM[37] 20 nm 亚fs 可实现空间超分辨 系统复杂, 视场小, 成像速度慢
      超快四波混频AFM[26] 50 nm 10 fs 可实现空间超分辨, 可以得到样品表面形貌信息 系统复杂, 视场小, 成像速度慢, 需要激发非线性效应
      超快PiFM[42] 10 nm 200 fs 可实现空间超分辨, 可以得到样品表面形貌信息 系统复杂, 视场小, 成像速度慢
      超快STM[46]
      0.1 nm
      亚fs
      可实现空间超分辨, 空间分辨率最高 系统复杂, 视场小, 成像速度慢, 只适用导电样品
      远场
      多脉冲
      高NA系统[55] 接近衍射极限 fs 量级 速度快, 大视场 无法实现空间超分辨
      SPPM[59] 114 nm fs量级 可实现空间超分辨 视场小, 需要多步相移, 成像速度慢
      SPSLM[60] 478 nm(横向);
      22 nm (纵向)
      256 fs 单帧成像, 大视场, 有三维成像能力 无法实现空间超分辨
      PINEM[67] 小于0.7 nm 10 fs 可实现空间超分辨 电子显微镜系统复杂, 设备昂贵, 样品要求高
      超快PEEM[71] 10 nm 10 fs 可实现空间超分辨 电子显微镜系统复杂, 设备昂贵, 样品要求高, 空间分辨率受材料影响
      LRM[83] 接近衍射极限 10 fs 可获得SPP传播相速度和群速度信息 目前仅能对SPP成像
      远场
      单脉冲
      CUP[86] 1 μm 100 fs 帧数高, 成像速度快 压缩感知算法较复杂, 条纹相机较为昂贵
      OPR[87] 11.1 μm 100 fs 重建算法简单、直接、稳定性好, 时间分辨率高 空间分辨率较低, 目前仅有微米量级
      CSMUP[88] 833 nm 4 ps 较高的空间分辨率, 图像尺寸更大 时间分辨率依赖于高光谱相机光谱带, 时间分辨率较低
      STAMP[89] 1 μm 227 fs 在显微和宏观成像领域都适用, 普适性强 帧数和时间分辨率存在依赖关系, 难以兼得
      FINCOPA[91] 3 μm 50 fs 时空分辨率、帧数、帧间隔相互独立 空间分辨率较低
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

    • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义.基于平凹多通腔的非线性脉冲压缩技术. 必威体育下载 , 2024, 73(12): 124206.doi:10.7498/aps.73.20240110
      [2] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟.偏振调制扫描光学显微镜方法. 必威体育下载 , 2024, 73(15): 157801.doi:10.7498/aps.73.20240688
      [3] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦.基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 必威体育下载 , 2022, 71(3): 034203.doi:10.7498/aps.71.20211665
      [4] 龙天洋, 李伟, 许浩天, 王逍.时空耦合畸变对超快超强激光参数测试及性能评估的影响. 必威体育下载 , 2022, 71(17): 174204.doi:10.7498/aps.71.20220563
      [5] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦.基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211665
      [6] 周曜智, 李春, 李晨阳, 李清廉.超声速横向气流中液体射流的轨迹预测与连续液柱模型. 必威体育下载 , 2020, 69(23): 234702.doi:10.7498/aps.69.20200903
      [7] 龙慧, 胡建伟, 吴福根, 董华锋.基于二维材料异质结可饱和吸收体的超快激光器. 必威体育下载 , 2020, 69(18): 188102.doi:10.7498/aps.69.20201235
      [8] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才.基于数字全息的血红细胞显微成像技术. 必威体育下载 , 2020, 69(16): 164201.doi:10.7498/aps.69.20200357
      [9] 牛璐, 王鹿霞.外场对分子纳米结电流-电压特性的影响. 必威体育下载 , 2018, 67(2): 027304.doi:10.7498/aps.67.20171604
      [10] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪.双重复频率锁模Yb:YAG陶瓷激光器. 必威体育下载 , 2018, 67(9): 094206.doi:10.7498/aps.67.20172345
      [11] 王建国, 杨松林, 叶永红.样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 必威体育下载 , 2018, 67(21): 214209.doi:10.7498/aps.67.20180823
      [12] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨.相干反斯托克斯拉曼散射显微成像技术研究. 必威体育下载 , 2016, 65(6): 064204.doi:10.7498/aps.65.064204
      [13] 王胭脂, 邵建达, 易葵, 齐红基, 王玎, 冷雨欣.宽带啁啾镜对的设计和制备. 必威体育下载 , 2013, 62(20): 204207.doi:10.7498/aps.62.204207
      [14] 刘诚, 潘兴臣, 朱健强.基于光栅分光法的相干衍射成像. 必威体育下载 , 2013, 62(18): 184204.doi:10.7498/aps.62.184204
      [15] 王淑莹, 章海军, 张冬仙.基于微球透镜的任选区高分辨光学显微成像新方法研究. 必威体育下载 , 2013, 62(3): 034207.doi:10.7498/aps.62.034207
      [16] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄.高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 必威体育下载 , 2012, 61(15): 154210.doi:10.7498/aps.61.154210
      [17] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭.飞秒激光器中超宽带色散补偿啁啾镜对的设计. 必威体育下载 , 2012, 61(1): 014211.doi:10.7498/aps.61.014211
      [18] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔.相干X射线衍射成像三维重建的数字模拟研究. 必威体育下载 , 2012, 61(1): 018701.doi:10.7498/aps.61.018701
      [19] 邓玉强, 孙青, 于靖.光学元件群延迟的直接测量. 必威体育下载 , 2011, 60(2): 028102.doi:10.7498/aps.60.028102
      [20] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔.相干X射线衍射成像的数字模拟研究. 必威体育下载 , 2011, 60(2): 028701.doi:10.7498/aps.60.028701
    计量
    • 文章访问数:5224
    • PDF下载量:305
    • 被引次数:0
    出版历程
    • 收稿日期:2023-05-05
    • 修回日期:2023-06-08
    • 上网日期:2023-06-29
    • 刊出日期:2023-09-05

      返回文章
      返回
        Baidu
        map