-
全光信号处理中具有优异非线性光学特性的光子平台对于提升器件的集成度、调制速度以及工作带宽等性能参数至关重要. 成熟的硅、氧化硅以及氮化硅光子平台由于材料本身中心对称, 基于这些平台的集成光子器件可实现的非线性光学功能受限; 二维材料尽管有着优异的非线性光学特性, 但只有原子层厚, 其非线性潜能无法被充分利用. 将二维材料与成熟的光子平台集成, 在充分利用光子平台成熟加工工艺的基础上, 可以显著提高光与二维材料的相互作用, 提升光子平台的非线性光学性能. 基于以上背景, 本文总结了近年来在基于转移方法和直接生长法制备的多种异质集成二维材料光子器件中进行非线性光学特性研究的最新进展; 阐述了相较于传统转移方法, 基于直接生长方法进行集成二维材料非线性光学研究的优势以及未来需要解决的技术难点; 指明了该领域未来的研究发展趋势; 并指出直接在各种成熟的光子平台上生长二维材料进行集成非线性光学特性的研究会对未来光通信、信号处理、光传感以及量子技术等领域的发展产生深远影响.Photonic platforms with excellent nonlinear optical characteristics are very important to improve the devices' performance parameters such as integration, modulation speeds and working bandwidths for all-optical signal processing. The traditional processing technology of photonic platforms based on silicon, silicon nitride and silicon oxide is mature, but the nonlinear function of these optical platforms is limited due to the characteristics of materials; Although two-dimensional (2D) materials possess excellent nonlinear optical properties, their nonlinear potentials cannot be fully utilized because of their atomic layer thickness. Integrating 2D materials with mature photonic platforms can significantly improve the interaction between light and matter, give full play to the potentials of 2D materials in the field of nonlinear optics, and improve the nonlinear optical performances of the integrated platforms on the basis of fully utilizing the mature processing technology of the photonic platforms. Based on the above ideas, starting from the basic principle of nonlinear optics (Section 2), this review combs the research progress of various nonlinear photonic platforms (resonators, metasurfaces, optical fibers, on-chip waveguides, etc.) heterogeneously integrated with 2D materials, realized by traditional transfer methods (Section 3) and emerging direct-growth methods (Section 4) in recent years, and the introduction is divided into second-order and third-order nonlinearity. Comparing with the transfer methods, the advantages of using direct-growth methods to realize the heterogeneous integration of 2D materials and photonic platforms for the study of nonlinear optics are expounded, and the technical difficulties to be overcome in preparing the actual devices are also pointed. In the future, we can try to grow 2D materials directly onto the surfaces of various cavities to study the enhancement of second-order nonlinearity; we can also try to grow 2D materials directly onto the on-chip waveguides or microrings to study the enhancement of third-order nonlinearity. Generally speaking, the research on integrated nonlinearity by directly growing 2D materials onto various photonic structures has aroused great interest of researchers in this field. As time goes on, breakthrough progress will be made in this field, and technical problems such as continuous growth of high-quality 2D materials onto photonic structures and wafer-level large-scale preparation will be broken through, further improving the performance parameters of chips and laying a good foundation for optical communication, signal processing, optical sensing, all-optical computing, quantum technology and so on.
-
Keywords:
- silicon/silicon nitride photonic platforms/
- two-dimensional materials/
- photonic integration/
- nonlinearity enhancement/
- growth of material
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] -
二维材料 厚度 泵浦波长/nm n2/(m2·W–1) 参考文献 发表年度 气相生长的石墨烯 单层 1550 –10–11 [92] 2012 5—7层 1150—2400 –(0.55-2.5) × 10–13 [93] 2016 化学合成的氧化石墨烯 2 μm 800 7.5 × 10–13 [94] 2014 1 μm 1550 4.5 × 10–14 [95] 2017 气相生长的硫化钼 25 μm 1064 (1.88 ± 0.48) × 10–16 [96] 2016 气相生长的硫化钨 0.75 nm 1040 (1.28 ± 0.03) × 10–14 [97] 2016 气相生长的硒化钨 11.4 nm 1040 (–1.87 ± 0.47) × 10–15 机械剥离的黑磷 15 nm 1030 –1.64 × 10–12 [98] 2018 气相生长的硒化铂 20 层 800 –1.33×10–15 [99] 2020 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154]
计量
- 文章访问数:6781
- PDF下载量:270
- 被引次数:0