\begin{document}$ {\rm X}{}^1\Sigma _{{0^ + }}^ + $\end{document}, \begin{document}$ {\rm a^3}{\Pi _{{0^ + }}} $\end{document}, \begin{document}$ {\rm a^3}{\Pi _1} $\end{document}, \begin{document}$ {\rm a^3}{\Pi _2} $\end{document}\begin{document}$ {\rm A^1}{\Pi _1} $\end{document}态之间的跃迁偶极矩. 计算得到的光谱常数和跃迁数据与现有的实验值符合很好. 研究发现:1) A1Π1\begin{document}${\text{X}}^{1}{{\Sigma }}_{{{0}^ + }}^ +$\end{document}(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)和(1, 5)带Q(J'')支的跃迁比较强, 随着J''的增大, Δυ = 0带的爱因斯坦A系数和振动分支比值逐渐减小, 加权的吸收振子强度值逐渐增大; Δυ ≠ 0带的爱因斯坦A系数振动分支比和加权的吸收振子强度值逐渐增大; 2) A1Π1υ' = 0和1能级的辐射寿命随着J'的增大而缓慢增大; 3) AlH分子的A1Π1 (υ' = 0和1, J' = 1, +) →\begin{document}$ {\text{X}}{}^1\Sigma _{{0^ + }}^ + $\end{document}(υ'' = 0—3, J'' = 1, –)跃迁满足双原子分子激光冷却的准则, 即对角化分布的振动分支比, A1Π1(υ' = 0和1, J' = 1, +)态极短的辐射寿命, \begin{document}${{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}}$\end{document}, a3Π1和a3Π2中间电子态不会对激光冷却产生干扰. 因此, 基于A1Π1(υ'= 0和1, J' = 1, +) ↔ \begin{document}$ {\rm X}{}^1\Sigma _{{0^ + }}^ + $\end{document}(υ''= 0—3, J'' = 1, –)循环跃迁, 本文提出了激光冷却AlH分子的可行性方案, 冷却时使用四束可见光波段的泵浦激光就可以散射2.541 × 104个光子, 这足以冷却到超冷温度, 并且主跃迁的多普勒温度和回弹温度为μK量级."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭

    Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule

    Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu
    PDF
    HTML
    导出引用
    • 在修正了各种误差(自旋-轨道耦合效应、标量相对论效应、核价相关效应及基组截断)的基础上, 本文利用内收缩的多参考组态相互作用(icMRCI) + Q方法计算了AlH分子10个Λ-S态和26个Ω态的势能曲线. 利用包含自旋-轨道耦合效应的icMRCI/AV6Z*理论计算了 $ {\rm X}{}^1\Sigma _{{0^ + }}^ + $ , $ {\rm a^3}{\Pi _{{0^ + }}} $ , $ {\rm a^3}{\Pi _1} $ , $ {\rm a^3}{\Pi _2} $ $ {\rm A^1}{\Pi _1} $ 态之间的跃迁偶极矩. 计算得到的光谱常数和跃迁数据与现有的实验值符合很好. 研究发现:1) A 1Π 1 ${\text{X}}^{1}{{\Sigma }}_{{{0}^ + }}^ +$ (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)和(1, 5)带 Q( J'')支的跃迁比较强, 随着 J''的增大, Δ υ= 0带的爱因斯坦 A系数和振动分支比值逐渐减小, 加权的吸收振子强度值逐渐增大; Δ υ≠ 0带的爱因斯坦 A系数 振动分支比和加权的吸收振子强度值逐渐增大; 2) A 1Π 1υ'= 0和1能级的辐射寿命随着 J'的增大而缓慢增大; 3) AlH分子的A 1Π 1( υ'= 0和1, J'= 1, +) → $ {\text{X}}{}^1\Sigma _{{0^ + }}^ + $ ( υ''= 0—3, J''= 1, –)跃迁满足双原子分子激光冷却的准则, 即对角化分布的振动分支比, A 1Π 1( υ'= 0和1, J'= 1, +)态极短的辐射寿命, ${{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}}$ , a 3Π 1和a 3Π 2中间电子态不会对激光冷却产生干扰. 因此, 基于A 1Π 1( υ'= 0和1, J'= 1, +) ↔ $ {\rm X}{}^1\Sigma _{{0^ + }}^ + $ ( υ''= 0—3, J''= 1, –)循环跃迁, 本文提出了激光冷却AlH分子的可行性方案, 冷却时使用四束可见光波段的泵浦激光就可以散射2.541 × 10 4个光子, 这足以冷却到超冷温度, 并且主跃迁的多普勒温度和回弹温度为μK量级.
      On the basis of correcting various errors caused by spin-orbit coupling effects, scalar relativity effects, core-valence correlation effects and basis set truncation, the potential energy curves of 10 Λ-S states and 26 Ω states of AlH molecule are calculated by using icMRCI + Qmethod. The transition dipole moments of 6 pairs of transitions between the ${\rm X}{}^1\Sigma _{{0^ + }}^ + $ , $ {\rm a^3}{\Pi _{{0^ + }}} $ , ${\rm a^3}{\Pi _1} $ , ${\rm a^3}{\Pi _2} $ , and ${\rm A^1}{\Pi _1} $ states are calculated by using the icMRCI/AV6Z* theory with the consideration of spin-orbit coupling effects. The spectral and transition data obtained here for AlH molecule are in very good agreement with the available experimental measurements. The findings are below. 1) The transition intensities are relatively strong of the Q( J″) branches for the (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4) and (1, 5) bands of the A 1Π 1 ${\rm X}{}^1\Sigma _{{0^ + }}^ + $ transition, with the increase of J″; the Einstein Acoefficients and vibrational branching ratio gradually decrease, and the weighted absorption oscillator strength gradually increases of Δ υ= 0 band, the Einstein Acoefficient, vibrational branching ratio, and weighted absorption oscillator strength gradually increase for the Δ υ≠ 0 bands. 2) The radiation lifetimes of A 1Π 1( υ'= 0, 1) increases slowly as the J'increases. 3) The A 1Π 1( υ'= 0 and 1, J'= 1, +) → ${\rm X}{}^1\Sigma _{{0^ + }}^ + $ ( υ''= 0–3, J'′ = 1, –) transition of AlH molecule satisfies the criteria for laser cooling of diatomic molecules, that is, the vibrational branching ratio of the highly diagonal distribution, the extremely short radiation lifetimes of the A 1Π 1( υ'= 0 and 1, J'= 1, +) states, and the intermediate electronic states $ {\rm a^3}{\Pi _{{0^ + }}} $ , a 3Π 1, and a 3Π 2do not interfere with laser cooling. Therefore, based on the cyclic transition A 1Π 1( υ'= 0 and 1, J'= 1, +) ↔ ${\rm X}{}^1\Sigma _{{0^ + }}^ + $ ( υ'′ = 0–3, J''= 1, –), we propose a feasible scheme for laser cooling of AlH molecule. When cooled, 2.541 × 10 4photons can be scattered by four pump lasers used in the visible range, which are enough to cool AlH to the ultra-cold temperature, and the Doppler temperature and recoil temperature of the main transition are on the order of μK.
          通信作者:邢伟,wei19820403@163.com
        • 基金项目:国家自然科学基金(批准号: 61275132, 11274097, 12074328)、河南省自然科学基金 (批准号: 212300410233)、河南省高等学校重点科研项目(批准号: 21A140023 )和信阳师范学院南湖学者奖励计划青年项目资助的课题.
          Corresponding author:Xing Wei,wei19820403@163.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097, 12074328), the Natural Science Foundation of Henan province, China (Grant No. 212300410233), the Natural Science Foundation of the Henan Higher Education Institutions of China (Grant No. 21A140023), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

      • 离解极限 Λ-S态 能级/cm–1
        本文 实验[35] 理论[20] 理论[24] 理论[25]
        Al(3s23p2Pu) + H(1s2Sg) X1Σ+, a3Π, A1Π, 13Σ+ 0 0 0 0 0
        Al(3s24s2Sg) + H(1s2Sg) C1Σ+, 23Σ+ 25217.30 25291.73a) 25082.40 25533 25306.42
        Al(3s3p2 4Pg) + H(1s2Sg) b3Σ, 15Σ, 23Π, 15Π 28790.80 29020.69b) 28151.60
        a)E(Al, 3s24s2Sg) =E(Al, 3s24s2S1/2) –E(Al, 3s23p2P3/2)/2;
        b)E(Al, 3s3p2 4Pg) = [E(Al, 3s3p2 4P1/2) +E(Al, 3s3p2 4P3/2) +E(Al, 3s3p2 4P5/2)]/3 –E(Al, 3s23p2P3/2)/2.
        下载: 导出CSV

        来源 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV
        icMRCI +Q/AV6 Z*a) 0 0.16514 1667.67 25.0119 6.30570 15.7097 3.2353
        icMRCI +Q/56a) 0 0.16510 1668.60 25.0353 6.30871 15.7799 3.2400
        ∆56a) 0 –0.00004 0.93 0.0234 0.00301 0.0702 0.0047
        icMRCI +Q/56+CVa) 0 0.16421 1686.55 23.8577 6.35248 14.6527 3.1860
        ∆CVa) 0 –0.00089 17.95 –1.1776 0.04377 –1.1272 –0.054
        icMRCI +Q/56+SRa) 0 0.16512 1665.84 24.9979 6.30753 15.7568 3.2365
        ∆SRa) 0 0.00002 –2.76 –0.0374 –0.00118 –0.0231 –0.0035
        icMRCI +Q/56 + CV + SRa) 0 0.16423 1683.86 23.8297 6.35184 14.7584 3.1825
        ∆CV+SRa) 0 –0.00087 15.26 –1.2056 0.04313 –1.0215 –0.0575
        实验[8] 0 0.16474 1682.44 29.1060 6.3937 18.685 3.16 ± 0.01b)
        实验[9] 0 0.16454 1682.38 29.0510 6.39378 18.7053
        实验[10] 0 1682.37 29.0466 6.39377 18.7044
        实验[14] 0 1682.37 29.0511 6.39379 18.7056
        实验[15] 0 0.16474 1682.37 29.0511 6.39379 18.7056
        实验[18] 0 1682.56 29.9 6.3907 18.58
        理论[6] 0 0.16350
        理论[22] 0 0.16533 1679.60 28.9 6.35 18.25 3.1699
        理论[23] 0 0.16510 1683.37 29.3786 6.3663 18.876 3.1775
        理论[24] 0 0.16540 1675 27 6.35
        理论[25] 0 0.16500 1665.93 26.99 6.3650 18.61 3.198
        理论[26] 0 0.16399 1690 6.45 3.19
        理论[27] 0 0.16465 1685.51 29.3786 6.401 18.4
        理论[28] 0 0.16490 1690 30 6.378 18.6 3.1738
        理论[29] 0 0.16454 1682.14 28.61 18.636
        理论[30] 0 0.16470 1683.35 25.80 6.3916 19.18
        理论[31] 0 0.16454 6.31938c) 3.1821
        a)本文的结果; b)文献[13]中的值; c)B0值.
        下载: 导出CSV

        Λ-S态 来源 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV
        a3Π 本文a) 15445.97 0.15895 1800.73 31.4954 6.65323 2.07076 1.2525
        实验[20] xb) 6.7520c)
        理论[6] 15702.28 0.1585
        理论[20] 15223.3d) 6.648c)
        理论[24] 15115 0.1600 2012 94 6.79
        理论[26] 0.15868 1811 6.89
        A1Π 本文a) 23746.94 0.16618 1415.29 186.750 6.87425 136.453 0.2384
        实验[14] 23638.33 1416.50 166.86 6.38642 73.2541 0.24±0.01e)
        实验[15] 23638.33 0.16483 1416.50 166.86 6.38642 73.2540
        实验[17] 23763.47f) 1082.77f) 0f) 6.38611 73.2282
        理论[6] 23959.82 0.1649
        理论[24] 23536 0.1665 1370 125 6.34
        理论[25] 23529.19
        b3Σ 本文a) 41859.74 0.15876 1741.72 38.5537 6.72229 11.3808 1.5480
        实验[19] 41445 0.15717 2464 275 7.0759 64.3
        实验[20] x+26223.71d) 6.7520c)
        理论[6] 42165.98 0.1582
        理论[20] 41370.7d) 6.602c)
        23Σ+ 本文a) 43694.99 0.16007 2683.33 503.341 6.78034 66.2526 0.8836
        理论[6] 43752.71 0.1565
        23Π 本文a) 43922.36 0.21642 1119.61 9.70530 3.70365 1.40363 1.2981
        理论[6] 44202.15 0.2144
        C1Σ+势阱一 本文a) 44744.73 0.16160 1575.90 91.0727 6.69259 44.0337 0.7528
        实验[15] 44675.37 0.16131 1575.34 125.5 6.66802 55.844 0.7567
        实验[16] 44675.37 0.16131 1575.34 125.5 6.66804 55.839 0.7567
        理论[24] 43999 0.1575 1566 100 7.15
        理论[25] 44621.50 0.1625
        C1Σ+势阱二 本文a) 43964.50 0.36561 484.710 4.04586 1.29836 0.524053 0.8517
        理论[6] 44629.05 0.3648
        理论[24] 41049 0.3735 491 6 1.24
        理论[25] 40595.83 0.3777
        15Σ 本文a) 53899.46 0.24733 294.567 46.1579 2.80395 42.6271 0.0605
        a) 利用icMRCI +Q/56 + CV + SR理论获得的结果; b)x表示a3Π态相对于X1Σ+态的T0值;
        c)B0值; d)T0值; e) 文献[13]中的值; f)ωexe固定为0, 获得的结果.
        下载: 导出CSV

        原子态(Al + H) Ω态 能级/cm–1
        本文 实验[35]
        Al(3s23p2P1/2) +
        H(1s2S1/2)
        0, 0+, 1 0 0
        Al(3s23p2P3/2) +
        H(1s2S1/2)
        2, 1(2), 0+, 0 103.93 112.06
        Al(3s24s2S1/2) +
        H(1s2S1/2)
        0+, 0, 1 25281.58 25347.76
        Al(3s3p2 4P1/2) +
        H(1s2S1/2)
        0, 0+, 1 28760.86 29020.41
        Al(3s3p2 4P3/2) +
        H(1s2S1/2)
        2, 1(2), 0+, 0 28812.66 29066.96
        Al(3s3p2 4P5/2) +
        H(1s2S1/2)
        3, 2(2), 1(2), 0+, 0 28893.16 29142.78
        下载: 导出CSV

        Ω态 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV Re附近主要的Λ-S态/%
        $ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ 0 0.16423 1683.83 23.8232 6.35152 14.7360 3.1732 X1Σ+(100.00)
        ${\text{a} }{}^{3}{ { {\Pi } }_{ { {0}^- } }}$ 15405.80 0.15895 1778.27 21.8727 6.64964 2.43602 1.2474 a3Π (100.00)
        $ {\text{a}}{}^{3}{{{\Pi }}_{{{0}^ + }}} $ 15405.93 0.15895 1778.66 22.0650 6.66104 1.34272 1.2618 a3Π (100.00)
        a3Π1 15445.97 0.15895 1777.36 21.4348 6.63386 3.90131 1.2424 a3Π (100.00)
        a3Π2 15486.79 0.15895 1778.71 22.0980 6.65497 1.91466 1.2523 a3Π (100.00)
        A1Π1 23747.16 0.16618 1414.96 186.498 6.86983 135.891 0.2660a) A1Π (100.00)
        (3) 0+第一势阱 41859.96 0.15876 1735.05 13.1710 6.71698 21.3299 1.1105 b3Σ(100.00)
        (3) 0+第二势阱 43881.10 0.21643 1114.60 3.71441 0.8599 23Π (100.00)
        (3) 0+第三势阱 43964.94 0.36554 484.319 3.56700 1.29849 0.56879 0.8517 C1Σ+(100.00)
        (3) 1 41859.96 0.15876 0.0258 b3Σ(100.00)
        (4) 1第一势阱 42188.07 0.16787 2943.15 5.96262 1.2320 13Σ+(99.96), b3Σ(0.04)
        (4) 1第二势阱 43922.58 0.21642 1114.52 3.71629 1.0169 23Π (100.00)
        (3) 0第一势阱 43694.98 0.16007 2685.04 6.79388 1.0452 23Σ+(100.00)
        (3) 0第二势阱 43880.88 0.21643 1118.65 9.05865 3.70790 2.61254 1.0221 23Π (100.00)
        (4) 0 46017.03 0.18561 3275.38 937.528 5.15024 46.7498 1.0291 23Π (99.92), 23Σ+(0.08)
        (4) 0+第一势阱 44744.95 0.16159 1562.41 6.66956 1.1870 C1Σ+(100.00)
        (4) 0+第二势阱 45035.32 0.19346 674.726 161.967 54.9019 2407.50 1.1564 23Π (97.66), b3Σ(2.34)
        (4) 0+第三势阱 47498.04 0.26377 1589.91 2.25963 0.8510 C1Σ+(100.00)
        (5) 1第一势阱 43694.98 0.16007 2768.86 7.39204 1.3227 23Σ+(100.00)
        (5) 1第二势阱 45041.46 0.19364 1.1556 b3Σ(99.42), 23Π (0.58)
        (5) 0+ 46034.37 0.18560 2898.99 1038.21 5.17322 85.9444 1.0360 23Π (99.98), b3Σ(0.02)
        (6) 1 46021.85 0.18577 3308.86 970.712 5.16845 53.5590 1.0375 23Σ+(99.96), 23Π (0.04)
        23Π2 43964.28 0.21640 1119.62 9.70272 3.70411 1.40547 1.2892 23Π (100.00)
        ${1}{}^{5}{ {\Sigma } }_{ { {0}^- } }^-$ 53899.24 0.24737 292.193 40.9254 2.72780 22.1616 0.0568 15Σ(99.99), 23Σ+(0.01)
        $1^{5} \Sigma_{1}^-$ 53899.46 0.24734 294.957 48.3039 2.85882 57.2987 0.0661 15Σ(100.00)
        ${1}{}^{5}{ {\Sigma } }_{2}^-$ 53899.68 0.24733 294.673 46.8641 2.83133 49.9771 0.0661 15Σ(100.00)
        a) 势阱的深度.
        下载: 导出CSV

        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        J'' (0, 0) 实验[17] (0, 1) 实验[17]
        1 23529.37 23470.34 1.612×107 0.9906 0.1310 425.30 21881.57 21845.63 9.618×104 0.0059 9.034×10–4 457.33
        2 23528.04 23469.19 1.609×107 0.9904 0.2179 425.33 21880.97 21845.22 9.846×104 0.0061 0.0015 457.34
        3 23526.02 23467.45 1.605×107 0.9901 0.3043 425.36 21880.04 21844.58 1.020×105 0.0063 0.0022 457.36
        4 23523.31 23465.10 1.599×107 0.9897 0.3898 425.41 21878.78 21843.70 1.067×105 0.0066 0.0030 457.39
        5 23519.86 23462.12 1.591×107 0.9892 0.4743 425.48 21877.14 21842.55 1.129×105 0.0070 0.0039 457.42
        6 23515.65 23458.47 1.581×107 0.9886 0.5574 425.55 21875.10 21841.10 1.205×105 0.0075 0.0049 457.47
        7 23510.63 23454.12 1.570×107 0.9878 0.6388 425.64 21872.61 21839.30 1.299×105 0.0082 0.0061 457.52
        8 23504.75 23449.00 1.557×107 0.9869 0.7183 425.75 21869.62 21837.11 1.411×105 0.0089 0.0075 457.58
        9 23497.95 23443.07 1.542×107 0.9857 0.7956 425.87 21866.06 21834.46 1.544×105 0.0099 0.0092 457.66
        10 23490.15 23436.26 1.525×107 0.9844 0.8702 426.01 21861.87 21831.29 1.701×105 0.0110 0.0112 457.74
        11 23481.26 23428.48 1.506×107 0.9827 0.9417 426.17 21856.94 21827.52 1.885×105 0.0123 0.0136 457.85
        12 23471.20 23419.66 1.484×107 0.9808 1.010 426.36 21851.19 21823.05 2.100×105 0.0139 0.0165 457.97
        13 23459.83 23409.67 1.460×107 0.9784 1.074 426.56 21844.49 21817.77 2.350×105 0.0158 0.0199 458.11
        14 23447.03 23398.40 1.433×107 0.9757 1.133 426.80 21836.71 21811.57 2.640×105 0.0180 0.0241 458.27
        15 23432.64 23385.70 1.402×107 0.9723 1.187 427.06 21827.68 21804.29 2.975×105 0.0206 0.0290 458.46
        16 23416.46 23371.41 1.368×107 0.9683 1.234 427.35 21817.21 21795.75 3.362×105 0.0238 0.0349 458.68
        17 23398.26 23355.31 1.329×107 0.9634 1.274 427.69 21805.07 21785.77 3.807×105 0.0276 0.0420 458.94
        下载: 导出CSV

        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        J'' (0, 2) 实验[17] (0,3)
        1 20290.37 20276.85 5.595×104 0.0034 6.113×10–4 493.20 18753.82 8.717×102 5.355×10–5 1.115×10–5 533.60
        2 20290.47 20277.15 5.637×104 0.0035 0.0010 493.19 18754.62 9.044×102 5.565×10–5 1.927×10–5 533.58
        3 20290.61 20277.59 5.700×104 0.0035 0.0015 493.19 18755.79 9.552×102 5.893×10–5 2.850×10–5 533.55
        4 20290.76 20278.15 5.787×104 0.0036 0.0019 493.19 18757.33 1.026×103 6.355×10–5 3.936×10–5 533.50
        5 20290.89 20278.80 5.898×104 0.0037 0.0024 493.18 18759.19 1.121×103 6.972×10–5 5.254×10–5 533.45
        6 20290.97 20279.50 6.037×104 0.0038 0.0029 493.18 18761.34 1.244×103 7.777×10–5 6.888×10–5 533.39
        7 20290.95 20280.21 6.206×104 0.0039 0.0034 493.18 18763.74 1.401×103 8.811×10–5 8.946×10–5 533.32
        8 20290.78 20280.88 6.411×104 0.0041 0.0040 493.19 18766.33 1.599×103 1.013×10–4 1.157×10–4 533.25
        9 20290.39 20281.45 6.655×104 0.0043 0.0046 493.19 18769.05 1.849×103 1.182×10–4 1.495×10–4 533.17
        10 20289.71 20281.85 6.945×104 0.0045 0.0053 493.21 18771.81 2.165×103 1.397×10–4 1.934×10–4 533.09
        11 20288.65 20282.00 7.289×104 0.0048 0.0061 493.24 18774.53 2.564×103 1.673×10–4 2.508×10–4 533.02
        12 20287.11 20281.80 7.697×104 0.0051 0.0070 493.27 18777.10 3.071×103 2.029×10–4 3.264×10–4 532.94
        13 20284.96 20281.15 8.181×104 0.0055 0.0080 493.33 18779.41 3.719×103 2.492×10–4 4.268×10–4 532.88
        14 20282.08 20279.91 8.759×104 0.0060 0.0093 493.40 18781.31 4.553×103 3.101×10–4 5.612×10–4 532.82
        15 20278.28 20277.94 9.450×104 0.0066 0.0107 493.49 18782.63 5.638×103 3.910×10–4 7.427×10–4 532.79
        16 20273.39 20275.06 1.028×105 0.0073 0.0124 493.61 18783.19 7.065×103 5.002×10–4 9.907×10–4 532.77
        17 20267.15 20271.07 1.129×105 0.0082 0.0144 493.76 18782.72 8.970×103 6.502×10–4 0.0013 532.78
        下载: 导出CSV

        $\tilde{v} $/cm–1 Aυ'J'υ''J
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        J'' (1, 0) 实验[17] (1, 1) 实验[17]
        1 24590.53 24551.64 1.828×106 0.1670 0.0136 406.95 22942.74 22926.94 8.154×106 0.7449 0.0697 436.18
        2 24586.03 24547.55 1.837×106 0.1687 0.0228 407.02 22938.96 22923.59 8.079×106 0.7419 0.1151 436.25
        3 24579.22 24541.37 1.852×106 0.1714 0.0322 407.14 22933.24 22918.50 7.967×106 0.7373 0.1590 436.36
        4 24570.03 24533.04 1.871×106 0.1750 0.0418 407.29 22925.50 22911.64 7.815×106 0.7310 0.2006 436.51
        5 24558.36 24522.50 1.894×106 0.1797 0.0518 407.48 22915.64 22902.93 7.623×106 0.7230 0.2394 436.69
        6 24544.08 24509.56 1.921×106 0.1854 0.0622 407.72 22903.53 22892.19 7.387×106 0.7130 0.2745 436.92
        7 24527.03 24494.16 1.951×106 0.1924 0.0729 408.00 22889.01 22879.35 7.106×106 0.7009 0.3050 437.20
        下载: 导出CSV

        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        J'' (1, 2) 实验[17] (1, 3) 实验[17]
        1 21351.54 21358.16 6.384×105 0.0583 0.0063 468.68 19814.99 19843.91 2.767×105 0.0253 0.0032 505.03
        2 21348.47 21355.52 6.437×105 0.0591 0.0106 468.75 19812.61 19841.97 2.790×105 0.0256 0.0053 505.09
        3 21343.81 21351.52 6.514×105 0.0603 0.0150 468.85 19808.99 19839.03 2.825×105 0.0261 0.0076 505.18
        4 21337.48 21346.09 6.615×105 0.0619 0.0196 468.99 19804.05 19835.01 2.872×105 0.0269 0.0099 505.31
        5 21329.39 21339.17 6.739×105 0.0639 0.0244 469.17 19797.69 19829.85 2.931×105 0.0278 0.0123 505.47
        6 21319.40 21330.59 6.881×105 0.0664 0.0295 469.39 19789.78 19823.38 3.003×105 0.0290 0.0149 505.67
        7 21307.35 21320.25 7.037×105 0.0694 0.0349 469.66 19780.14 19815.51 3.088×105 0.0305 0.0178 505.92
        下载: 导出CSV

        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        $\tilde{v} $/cm–1 Aυ'J'υ''J''
        /s–1
        Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''
        /nm
        J'' (1, 4) 实验[17] (1,5)
        1 18331.39 18382.88 3.727×104 0.0034 4.988×10–4 545.90 16899.39 1.003×104 9.167×10–4 1.580×10–4 592.16
        2 18329.69 18381.64 3.815×104 0.0035 8.512×10–4 545.95 16898.36 1.031×104 9.469×10–4 2.707×10–4 592.19
        3 18327.09 18379.73 3.951×104 0.0037 0.0012 546.03 16896.76 1.074×104 9.944×10–4 3.950×10–4 592.25
        4 18323.51 18377.09 4.140×104 0.0039 0.0017 546.14 16894.52 1.135×104 0.0011 5.368×10–4 592.33
        5 18318.84 18373.66 4.388×104 0.0042 0.0022 546.27 16891.53 1.217×104 0.0012 7.035×10–4 592.43
        6 18312.97 18369.25 4.703×104 0.0045 0.0027 546.45 16887.65 1.324×104 0.0013 9.047×10–4 592.57
        7 18305.71 18363.80 5.096×104 0.0050 0.0034 546.67 16882.73 1.461×104 0.0014 0.0012 592.74
        下载: 导出CSV

        (υ',υ'') $\tilde{v} $
        /cm–1
        Aυ'J'υ′′J''
        /s–1
        Rυ'J'υ′′J'' gfυ'J'υ′′J'' λυ'J'υ′′J''
        /nm
        (υ',υ'') $\tilde{v} $
        /cm–1
        Aυ'J'υ′′J''
        /s–1
        Rυ'J'υ′′J'' gfυ'J'υ′′J'' λυ'J'υ′′J''
        /nm
        (0, 0) 15439.35 1.4233 0.4815 8.952×10–9 648.16 (1, 0) 17153.57 1.1118 0.2666 5.665×10–9 583.38
        (0, 1) 13791.56 1.3715 0.4639 1.081×10–8 725.60 (1, 1) 15505.78 0.3272 0.0785 2.040×10–9 645.38
        (0, 2) 12200.35 0.1427 0.0483 1.437×10–9 820.23 (1, 2) 13914.57 2.3636 0.5668 1.830×10–8 719.18
        (0, 3) 10663.80 0.0170 0.0057 2.237×10–10 938.42 (1, 3) 12378.03 0.3047 0.0731 2.982×10–9 808.46
        (0, 4) 9180.20 0.0017 5.644×10–4 2.968×10–11 1090.08 (1, 4) 10894.42 0.0552 0.0132 6.968×10–10 918.55
        (2, 0) 18760.32 0.1534 0.0217 6.534×10–10 533.42 (3, 0) 20242.83 9.974×10–4 7.907×10–5 3.649×10–12 494.35
        (2, 1) 17112.53 3.0626 0.4328 1.568×10–8 584.78 (3, 1) 18595.04 0.3518 0.0279 1.526×10–9 538.16
        (2, 2) 15521.32 0.0124 0.0018 7.738×10–11 644.73 (3, 2) 17003.84 5.9524 0.4719 3.086×10–8 588.52
        (2, 3) 13984.78 3.3509 0.4736 2.569×10–8 715.57 (3, 3) 15467.29 0.8562 0.0679 5.365×10–9 646.99
        (2, 4) 12501.17 0.3662 0.0518 3.513×10–9 800.49 (3, 4) 13983.68 5.0015 0.3965 3.835×10–8 715.63
        下载: 导出CSV

        (υ',υ'') $\tilde{v} $
        /cm–1
        Aυ'J'υ′′J''
        /s–1
        Rυ'J'υ′′J'' gfυ'J'υ′′J'' λυ'J'υ′′J''
        /nm
        (υ',υ'') $\tilde{v} $
        /cm–1
        Aυ'J'υ′′J''
        /s–1
        Rυ'J'υ′′J'' gfυ'J'υ′′J'' λυ'J'υ′′J''
        /nm
        (0, 0) 8076.52 1.0762 0.9466 7.420×10–8 1239.04 (1, 0) 9138.01 0.5696 0.0665 3.068×10–8 1095.11
        (0, 1) 6362.81 0.0072 0.0493 7.977×10–10 1572.75 (1, 1) 7424.29 0.2740 0.8481 2.236×10–8 1347.89
        (0, 2) 4756.62 3.940×10–4 0.0038 7.832×10–11 2103.83 (1, 2) 5818.10 0.0142 0.0748 1.887×10–9 1720.00
        (0, 3) 3274.75 1.009×10–5 2.791×10–4 4.233×10–12 3055.84 (1, 3) 4336.24 0.0020 0.0096 4.722×10–10 2307.79
        (0, 4) 1943.34 1.047×10–6 2.303×10–5 1.246×10–12 5149.44 (1, 4) 3004.82 1.304×10–4 8.994×10–4 6.496×10–11 3330.35
        (2, 0) 18806.49 5.770×10–4 9.414×10–6 7.337×10–12 532.11 (3, 0) 20288.57 0.0063 1.050×10–4 6.836×10–11 493.24
        (2, 1) 17158.70 6.5353 0.1066 9.983×10–8 583.21 (3, 1) 18640.77 0.0622 0.0010 8.047×10–10 536.84
        (2, 2) 15567.49 49.009 0.7996 9.095×10–7 642.82 (3, 2) 17049.57 6.7939 0.1141 1.051×10–7 586.94
        (2, 3) 14030.95 4.6491 0.0759 1.062×10–7 713.22 (3, 3) 15513.02 47.992 0.8058 8.969×10–7 645.08
        (2, 4) 12547.34 0.9790 0.0160 2.797×10–8 797.55 (3, 4) 14029.42 3.2035 0.0538 7.320×10–8 713.29
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

      • [1] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋.BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 必威体育下载 , 2022, 71(10): 103101.doi:10.7498/aps.71.20220038
        [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田.SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 必威体育下载 , 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [3] 罗华锋, 万明杰, 黄多辉.BH+离子基态及激发态的势能曲线和跃迁性质的研究. 必威体育下载 , 2018, 67(4): 043101.doi:10.7498/aps.67.20172409
        [4] 李晨曦, 郭迎春, 王兵兵.O2分子B3u-态势能曲线的从头计算. 必威体育下载 , 2017, 66(10): 103101.doi:10.7498/aps.66.103101
        [5] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花.GeS分子基态和低激发态的势能曲线与光谱性质. 必威体育下载 , 2016, 65(6): 063102.doi:10.7498/aps.65.063102
        [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超.SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 必威体育下载 , 2014, 63(8): 083102.doi:10.7498/aps.63.083102
        [7] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 必威体育下载 , 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [8] 陈恒杰.LiAl分子基态、激发态势能曲线和振动能级. 必威体育下载 , 2013, 62(8): 083301.doi:10.7498/aps.62.083301
        [9] 朱遵略, 郎建华, 乔浩.SF分子基态及低激发态势能函数与光谱常数的研究. 必威体育下载 , 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [10] 李松, 韩立波, 陈善俊, 段传喜.SN-分子离子的势能函数和光谱常数研究. 必威体育下载 , 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [11] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳.BP+基态和激发态的势能曲线和光谱性质的研究. 必威体育下载 , 2013, 62(19): 193301.doi:10.7498/aps.62.193301
        [12] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.PS自由基X2Π态的势能曲线和光谱性质. 必威体育下载 , 2013, 62(20): 203104.doi:10.7498/aps.62.203104
        [13] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛.PH, PD和PT分子常数理论研究. 必威体育下载 , 2012, 61(6): 063104.doi:10.7498/aps.61.063104
        [14] 施德恒, 牛相宏, 孙金锋, 朱遵略.BF自由基X1+和a3态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋.用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 必威体育下载 , 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [16] 王杰敏, 孙金锋.采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 必威体育下载 , 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [17] 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 必威体育下载 , 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [18] 王新强, 杨传路, 苏涛, 王美山.BH分子基态和激发态解析势能函数和光谱性质. 必威体育下载 , 2009, 58(10): 6873-6878.doi:10.7498/aps.58.6873
        [19] 高 峰, 杨传路, 张晓燕.多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 必威体育下载 , 2007, 56(5): 2547-2552.doi:10.7498/aps.56.2547
        [20] 钱 琪, 杨传路, 高 峰, 张晓燕.多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 必威体育下载 , 2007, 56(8): 4420-4427.doi:10.7498/aps.56.4420
      计量
      • 文章访问数:2661
      • PDF下载量:67
      • 被引次数:0
      出版历程
      • 收稿日期:2023-04-16
      • 修回日期:2023-05-19
      • 上网日期:2023-06-14
      • 刊出日期:2023-08-20

        返回文章
        返回
          Baidu
          map