搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    林基艳, 林书玉

    Large-scale piezoelectric ultrasonic transducers with tubular near-period phononic crystal point defect structure

    Lin Ji-Yan, Lin Shu-Yu
    PDF
    HTML
    导出引用
    • 大尺寸压电超声换能器的耦合振动会导致其辐射面纵向位移振幅的平均值较小, 振幅分布不均匀, 严重影响系统的性能和可靠性. 为了改善大尺寸超声振动系统性能, 可利用二维孔/槽型近周期声子晶体结构对横向振动进行抑制, 但在对横向振动抑制的同时, 该结构会对换能器机械强度和工作带宽等性能参数造成不利的影响. 针对这一问题, 本文提出利用管柱型近周期声子晶体点缺陷结构对大尺寸夹心式纵振压电陶瓷换能器进行优化的新思路. 该方法不仅可以利用构造的固/气二维近周期声子晶体结构的点缺陷模式, 获得极低的能量损耗, 有效提高系统辐射面的纵向位移振幅和振幅分布均匀度; 也可以利用管柱结构中的双环形孔增强声波的多重散射, 使得换能器在管柱柱高较低的条件下产生禁带, 在有效抑制横向振动的同时, 大幅拓宽换能器系统的工作带宽, 增强系统的稳定性和机械强度, 降低加工成本. 仿真结果证明了优化的有效性.
      The coupling vibration of large-scale piezoelectric ultrasonic transducer will make the average value of the longitudinal displacement amplitude of its radiation surface small and the amplitude distribution uneven, which seriously affects the performance and reliability of the system. In order to improve the performance of large-scale ultrasonic vibration system, a two-dimensional hole/slot near-periodic phononic crystal structure is used to suppress the transverse vibration, but the structure will in turn affect the mechanical strength of the transducer while achieving the suppression of the transverse vibration. The working bandwidth and other performance parameters have adverse effects. Based on this, a new idea of optimizing the large-scale sandwich longitudinal vibration piezoelectric ceramic transducer by using the tubular near-periodic phononic crystal point defect structure is proposed. This method can not only use the point defect mode of the constructed solid/gas two-dimensional near-periodic phononic crystal structure to obtain extremely low energy loss, but also effectively improve the longitudinal displacement amplitude and amplitude distribution uniformity of the radiation surface of the system. The double annular holes in the pipe string structure can also be used to enhance the multiple scattering of sound waves, so that the transducer can also produce a band gap under the low conditions of the pipe string, effectively suppressing the transverse vibration, at the same time, significantly broadening the working bandwidth of the transducer system, enhancing the stability and mechanical strength of the system, and reducing the processing cost. Simulation results and experimental processing test results also prove the effectiveness of the optimization. In order to find the best parameters for the performance of the large-scale longitudinal vibration piezoelectric ultrasonic transducer, in the paper the finite element analysis software is used to study the influence of the inner radius r 1of the pipe string, the width rof the pipe string ring, the radius Rof the outermost air cylinder hole, and the height h 2of the pipe string at the longitudinal resonance frequency of the transducer performance, the longitudinal displacement amplitude distribution uniformity of the radiation surface, and the average longitudinal displacement amplitude. In the research is finally found the range of parameters that can make the performance of the transducer reach a relatively ideal state. The simulation results show that the tubular near-periodic phononic crystal point defect structure can improve the performance of large-scale longitudinal vibration piezoelectric ultrasonic transducer.
          通信作者:林书玉,sylin@snnu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 12174240, 11964040)和博士科研启动基金(批准号: 22GK26)资助的课题.
          Corresponding author:Lin Shu-Yu,sylin@snnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 11964040) and the Doctoral Research Start-up Fund, China (Grant No. 22GK26).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

      • 图 5 的前盖板

        图 7 的(a)结构示意图、(b)振型图及(c)辐射面位移分布云图

        部件 材料属性 形状 外/大端半径/mm 内/小端半径/mm 高度/mm
        前盖板 Aluminum 6063-T83 圆锥 50 31 35
        压电陶瓷片(两片) PZT-4 等截面圆环 30 7 8
        后盖板 Steel AISI 4340 等截面圆柱 31 31 30
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

      计量
      • 文章访问数:2369
      • PDF下载量:90
      • 被引次数:0
      出版历程
      • 收稿日期:2023-02-13
      • 修回日期:2023-03-03
      • 上网日期:2023-03-16
      • 刊出日期:2023-05-05

        返回文章
        返回
          Baidu
          map