搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏

    Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy

    Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong
    PDF
    HTML
    导出引用
    • BCC(体心立方)和FCC(面心立方)结构共存的高熵合金通常具有优异的综合力学性能, Al元素可以促进含Cu高熵合金由FCC向BCC结构转变. 本文基于Chan-Hilliard方程和Allen-Cahn方程, 建立Al xCuMnNiFe高熵合金三维相场模型, 模拟了Al xCuMnNiFe高熵合金( x= 0.4, 0.5, 0.6, 0.7)在823 K等温时效时纳米富Cu相的微观演化过程. 结果表明, Al xCuMnNiFe高熵合金时效时会产生两种复杂核壳结构: 富Cu核/B2 s壳以及B2 c核/FeMn壳, 通过讨论分析发现形成的B2 c对纳米富Cu相的形成起到抑制作用, 这种抑制作用随着Al元素的增加而变大; 结合经验公式做出Al xCuMnNiFe高熵合金富Cu相的屈服强度随时效时间的变化曲线, 得到峰值屈服强度的时效时间和合金体系, 可以为时效工艺提供参考.
      High-entropy alloys with BCC and FCC coexisting structures usually have excellent comprehensive mechanical properties, and Al element can promote the transformation of Cu-containing high-entropy alloys from FCC structure to BCC structure to obtain the BCC and FCC coexisting structures. In order to illustrate the process of phase separation of high entropy alloys, a low-cost Al-TM transition group element high-entropy alloy is selected in this work. Based on the Chan-Hilliard equation and Allen-Cahn equation, a three-dimensional phase field model of Al xCuMnNiFe high-entropy alloy is established, and the microscopic evolution of the nano-Cu-rich phase of Al xCuMnNiFe high-entropy alloy ( x= 0.4, 0.5, 0.6, 0.7) at 823 K isothermal aging is simulated. The results show that the Al xCuMnNiFe high-entropy alloy generates two complex core-shell structures upon aging: Cu-rich core/B2 sshell and B2 ccore/FeMn shell, and it is found through discussion and analysis that the formed B2 cplays an inhibitory role in the formation of the nano-Cu-rich phase, and that this inhibitory role becomes larger with the increase of Al element. Combining the empirical formula, the curve of yield strength of the Cu-rich phase varying with the aging time is obtained for the Al xCuMnNiFe high-entropy alloy, and the overall yield strength of the high-entropy alloy has a rising-and-then-falling trend with the change of time, and the aging time of the peak yield strength and the alloy system are obtained from the change of the curve, so that the best alloy system and aging time of the high-entropy alloy can provide a reference for aging process.
          通信作者:赵宇宏,zhaoyuhong@nuc.edu.cn
        • 基金项目:国家自然科学基金(批准号: 52074246, 22008224, 52275390, 52205429, 52201146)、国防基础科研项目(批准号: JCKY2020408B002, WDZC2022-12)、山西省重点研发项目(批准号: 202102050201011, 202202050201014)和山西省研究生创新项目(批准号: 2021Y592)资助的课题.
          Corresponding author:Zhao Yu-Hong,zhaoyuhong@nuc.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 22008224, 52275390, 52205429, 52201146), the National Defense Basic Scientific Research Program of China (Grant Nos. JCKY2020408B002, WDZC2022-12), the Key Research and Development Program of Shanxi Province (Grant Nos. 202102050201011, 202202050201014), and the Shanxi Graduate Innovation Project, China (Grant No. 2021Y592)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

        [65]

        [66]

        [67]

        [68]

      • Alloy system Al Cu Mn Ni Fe
        Al0.4Cu1.5Mn1Ni1Fe1.5 7.4 27.8 18.5 18.5 27.8
        Al0.5Cu1.5Mn1Ni1Fe1.5 9.2 27.2 18.2 18.2 27.2
        Al0.6Cu1.5Mn1Ni1Fe1.5 10.8 26.8 17.8 17.8 26.8
        Al0.7Cu1.5Mn1Ni1Fe1.5 12.28 26.36 17.5 17.5 26.36
        下载: 导出CSV

        Alloy elements Cu Mn Ni Al
        ${D}_{i}^{0, \varphi }/{({10}^{-5}~{\rm{m} } }^{2}{\cdot}{ {\rm{s} } }^{-1}$) ${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$ 4.70 14.90 14.00 53.50
        ${\rm{\gamma } }({\rm{F} }{\rm{C} }{\rm{C} })$ 4.30 1.78 1.08 2.20
        ${Q}_{i}^{0, \varphi }/{({10}^{5}~{\rm{J} }{\cdot}{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$) ${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$ 2.44 2.63 2.64 2.71
        ${\rm{\gamma } } ({\rm{F} }{\rm{C} }{\rm{C} } )$ 2.80 2.64 2.73 2.67
        $ {D}_{i}^{0, \varphi } $-frequency factor; $ {Q}_{i}^{0, \varphi } $-diffusion activation energy
        下载: 导出CSV

        Parameter type Parameter Value Unit
        Cahn-Hilliard model[55] $ {\kappa }_{c} $ $ 5.0\times {10}^{-15} $ ${\rm{J} \cdot}{ {\rm{m} } }^{2}{\cdot{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
        $ {\kappa }_{\eta } $ $ 1.0\times {10}^{-15} $ $ {\rm{J}}{\cdot{\rm{m}}}^{2}{\cdot{\rm{m}}{\rm{o}}{\rm{l}}}^{-1} $
        $ Y $ $ 2.14\times {10}^{11} $ $ {\rm{P}}{\rm{a}} $
        $ {V}_{{\rm{m}}} $ $ 7.09\times {10}^{-6} $ ${ {\rm{m} } }^{3}{\cdot {\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
        $ W $ $ 5.0\times {10}^{3} $ ${\rm J} {\cdot} {\rm mol}^{-1}$
        $ T $ 823 K
        Elasticity constant[56] $ {C}_{11}^{{\rm{m}}} $ 228 GPa
        $ {C}_{12}^{{\rm{m}}} $ 132 GPa
        $ {C}_{44}^{{\rm{m}}} $ 116.5 GPa
        $ {C}_{11}^{{\rm{p}}} $ 169 GPa
        $ {C}_{12}^{{\rm{p}}} $ 122 GPa
        $ {C}_{44}^{{\rm{p}}} $ 75.3 GPa
        Lattice misfit coefficient[55] $ {\varepsilon }_{{\rm{C}}{\rm{u}}}^{0} $ $ 3.29\times {10}^{-2} $
        $ {\varepsilon }_{{\rm{M}}{\rm{n}}}^{0} $ $ 5.22\times {10}^{-4} $
        $ {\varepsilon }_{{\rm{N}}{\rm{i}}}^{0} $ $ 4.75\times {10}^{-4} $
        $ {\varepsilon }_{{\rm{A}}{\rm{l}}}^{0} $ $ 1.64\times {10}^{-4} $
        Simulation parameters $ {\rm{d}}x $ 1 nm
        $ {\rm{d}}y $ 1 nm
        $ {\rm{d}}z $ 1 nm
        $ \Delta t $ 0.01
        $ {\kappa }_{c}, {\kappa }_{\eta } $-gradient energy coefficient; $ Y $-average stiffness; $ {V}_{{\rm{m}}} $-molar volume; $ W $-structural transformation barriers; $ {C}_{11}^{{\rm{m}}}, {C}_{12}^{{\rm{m}}}, {C}_{44}^{{\rm{m}}} $-elastic constant of the matrix phase; $ {C}_{11}^{{\rm{p}}}, {C}_{12}^{{\rm{p}}}, {C}_{44}^{{\rm{p}}} $-elastic constant of the precipitated phase; $ {\varepsilon }_{i}^{0}(i={\rm{C}}{\rm{u}}, {\rm{M}}{\rm{n}}, {\rm{N}}{\rm{i}}, {\rm{A}}{\rm{l}}) $- lattice misfit coefficients of Cu, Mn, Ni, Al; $ {\rm{d}}x, {\rm{d}}y, {\rm{d}}z $ unit length of simulated meshes; $ \Delta t $-unit time step
        下载: 导出CSV

        Alloy elements Al Cu Mn Ni Fe
        Al –1 –19 –22 –11
        Cu –1 4 4 13
        Mn –19 4 –8 0
        Ni –22 4 –8 –2
        Fe –11 13 0 –2
        下载: 导出CSV

        Alloy system t* $ {N}_{v} $/($ \times {10}^{23}{{\rm{m}}}^{-3}) $ f/% r/nm Strengthening/MPa
        Al0.4Cu1.5Mn1Ni1Fe1.5 4500 3.9291 0.0116 1.9148 1166
        Al0.5Cu1.5Mn1Ni1Fe1.5 4500 4.0817 0.0123 1.9286 1188
        Al0.6Cu1.5Mn1Ni1Fe1.5 5000 3.3951 0.0103 1.9343 1038
        Al0.7Cu1.5Mn1Ni1Fe1.5 7500 4.04 0.031 2.63 775
        Whenr$\; \leqslant \;$2 nm, it is a dislocation slicing mechanism, and whenr> 2 nm, it is a dislocation bypassing mechanism.
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

        [65]

        [66]

        [67]

        [68]

      • [1] 刘钟磊, 曹津铭, 王智, 赵宇宏.相场法探究铁电体涡旋拓扑结构与准同型相界. 必威体育下载 , 2023, 72(3): 037702.doi:10.7498/aps.72.20221898
        [2] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华.金属基复合材料原位反应相场模型. 必威体育下载 , 2022, 71(9): 096401.doi:10.7498/aps.71.20211737
        [3] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华.相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 必威体育下载 , 2022, 71(8): 080201.doi:10.7498/aps.71.20212087
        [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程.含钨难熔高熵合金的制备、结构与性能. 必威体育下载 , 2021, 70(10): 106201.doi:10.7498/aps.70.20201986
        [5] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静.Fe-Cr合金辐照空洞微结构演化的相场法模拟. 必威体育下载 , 2021, 70(5): 054601.doi:10.7498/aps.70.20201457
        [6] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华.相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 必威体育下载 , 2021, 70(8): 086401.doi:10.7498/aps.70.20201843
        [7] 王陶, 李俊杰, 王锦程.界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 必威体育下载 , 2013, 62(10): 106402.doi:10.7498/aps.62.106402
        [8] 王雅琴, 王锦程, 李俊杰.定向倾斜枝晶生长规律及竞争行为的相场法研究. 必威体育下载 , 2012, 61(11): 118103.doi:10.7498/aps.61.118103
        [9] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华.相场法模拟NiCu合金非等温凝固枝晶生长. 必威体育下载 , 2011, 60(4): 040507.doi:10.7498/aps.60.040507
        [10] 宗亚平, 王明涛, 郭巍.再结晶和外力场下第二相析出的相场法模拟. 必威体育下载 , 2009, 58(13): 161-S168.doi:10.7498/aps.58.161
        [11] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮.强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 必威体育下载 , 2009, 58(11): 7802-7808.doi:10.7498/aps.58.7802
        [12] 陈玉娟, 陈长乐.相场法模拟对流速度对上游枝晶生长的影响. 必威体育下载 , 2008, 57(7): 4585-4589.doi:10.7498/aps.57.4585
        [13] 冯 力, 王智平, 路 阳, 朱昌盛.二元合金多晶粒的枝晶生长的等温相场模型. 必威体育下载 , 2008, 57(2): 1084-1090.doi:10.7498/aps.57.1084
        [14] 李俊杰, 王锦程, 许 泉, 杨根仓.外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 必威体育下载 , 2007, 56(3): 1514-1519.doi:10.7498/aps.56.1514
        [15] 龙文元, 蔡启舟, 魏伯康, 陈立亮.相场法模拟多元合金过冷熔体中的枝晶生长. 必威体育下载 , 2006, 55(3): 1341-1345.doi:10.7498/aps.55.1341
        [16] 张玉祥, 王锦程, 杨根仓, 周尧和.相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响. 必威体育下载 , 2006, 55(5): 2433-2438.doi:10.7498/aps.55.2433
        [17] 杨 弘, 张清光, 陈 民.热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 必威体育下载 , 2005, 54(8): 3740-3744.doi:10.7498/aps.54.3740
        [18] 李梅娥, 杨根仓, 周尧和.二元合金高速定向凝固过程的相场法数值模拟. 必威体育下载 , 2005, 54(1): 454-459.doi:10.7498/aps.54.454
        [19] 龙文元, 蔡启舟, 陈立亮, 魏伯康.二元合金等温凝固过程的相场模型. 必威体育下载 , 2005, 54(1): 256-262.doi:10.7498/aps.54.256
        [20] 刘红.双轴向列相液晶的表面能. 必威体育下载 , 2002, 51(12): 2786-2792.doi:10.7498/aps.51.2786
      计量
      • 文章访问数:4641
      • PDF下载量:111
      • 被引次数:0
      出版历程
      • 收稿日期:2022-12-26
      • 修回日期:2023-01-30
      • 上网日期:2023-02-09
      • 刊出日期:2023-04-05

        返回文章
        返回
          Baidu
          map