-
在计算等离子体环境中的原子结构时, 一般情况下只考虑等离子体对核-电子相互作用的屏蔽, 较少考虑其对电子-电子相互作用的屏蔽. 本文采用MCDHF (multi-configuration Dirac-Hartree-Fork)方法结合屏蔽势研究了电子-电子相互作用的等离子体屏蔽对原子结构参数的影响随电子密度、电子温度、核电荷数和束缚电子个数的变化规律. 结果表明, 对于类氦离子的基态和第一激发态, 等离子体对电子-电子相互作用的屏蔽引起的能量移动量、跃迁能移动量和跃迁几率移动量分别随着电子密度和电子温度的升高而不断增大和减小; 随着核电荷数的增大, 能量移动量逐渐增大并趋于稳定值, 跃迁能移动量和跃迁几率移动量逐渐减小并趋于0. 能量移动量随着束缚电子个数的增加而增大. 当满足电子密度(束缚电子个数)大于或者等于其临界值以及电子温度(核电荷数)小于或者等于其临界值任意一条件时, 等离子体对电子-电子相互作用的屏蔽效应不可忽略.In the calculation of atomic structures within the plasma environment, the plasma screening effect on nuclei - electron interactions is generally considered, but the plasma screening effect on electron - electron interactions is less considered. In this work, the MCDHF method combined with the screening potential is used to study plasma screening effect on the atomic structure parameters versus the electron density, electron temperature, nuclear charge and the number of bound electrons. For the ground states and the first excited states of helium-like ions, the energy shifts, transition energy shifts and transition probability shifts caused by the plasma screening effect on electron-electron interactions increase with the increase of electron densities and decrease with increasing the electron temperatures, respectively. With the increase of nuclear charge, the energy shifts increase gradually and tends to a stable value, while the transition energy shifts and transition probability shifts decrease gradually and tend to 0. The energy shifts increase with the increase of the number of bound electrons. The electron density, electron temperature, nuclear charge and number of bound electrons corresponding to the percentages of transition energy shifts and transition probability shifts caused by plasma screening on electron-electron interactions greater than or equal to 10%, are called as the critical electron density, critical electron temperature, critical nuclear charge and critical number of bound electrons, respectively. When one of the following four conditions is satisfied, the percentages of transition energy shifts and transition probability shifts caused by plasma screening on electron-electron interactions will be greater than or equal to 10%, and the plasma screening effect on electron - electron interactions can not be ignored. 1) The electron density is greater than or equal to the critical electron density, when the electron temperature is a fixed value. 2) The electron temperature is less than or equal to the critical electron temperature, when the electron density is a fixed value. 3) The nuclear charge is less than or equal to the critical nuclear charge, when the electron density and temperature are both fixed. 4) The number of bound electrons is greater than or equal to the critical number of bound electrons, when the electron density and temperature are both fixed.
-
Keywords:
- plasma/
- MCDHF method/
- screening potential/
- structural parameters
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] -
电子密度/$\;{\rm{cm}}^{-3}$ 德拜屏蔽强度 模型A 模型B $E_ {\rm{DB}}$ $E_ {\rm{DB}}$[37] $E_ {\rm{SM}}$ $E_ {\rm{DB}}$ $E_ {\rm{DB}}$[37] $E_ {\rm{SM}}$ 9.87(19) 0.01 –32.3007 –32.2978 –32.3008 –32.3106 –32.3079 –32.3108 3.95(20) 0.02 –32.1811 –32.1783 –32.1817 –32.2011 –32.1982 –32.2016 2.47(21) 0.05 –31.8245 –31.8215 –31.8282 –31.8740 –31.8711 –31.8775 9.87(21) 0.1 –31.2363 –31.2324 –31.2511 –31.3345 –31.3306 –31.3482 1.54(22) 0.125 –30.9451 –30.9412 –30.9680 –31.0673 –31.0633 –31.0885 3.95(22) 0.2 –30.0830 –30.0790 –30.1395 –30.2758 –30.2717 –30.3284 6.17(22) 0.25 –29.5177 –29.5137 –29.6041 –29.7565 –29.7523 –29.8370 8.88(22) 0.3 –28.9597 –28.9557 –29.0814 –29.2436 –29.2394 –29.3571 1.58(23) 0.4 –27.8653 –27.8614 –28.0730 –28.2372 –28.2328 –28.4309 2.47(23) 0.5 –26.7992 –26.7963 –27.1109 –27.2557 –27.2522 –27.5467 3.55(23) 0.6 –25.7604 –25.7576 –26.1932 –26.2986 –26.2948 –26.7027 注1: $E_ {\rm{DB}}$表示用德拜模型计算的能量 注2: $E_ {\rm{SM}}$表示用SM模型计算的能量 电子温度为50 eV 电子密度为$5.0\times 10^{24}\;{\rm{cm}}^{-3}$ 电子密度
/$\;{\rm{cm}}^{-3}$${\text{%}} \Delta E_ {\rm{TE} }$ ${\text{%} } \Delta A$ 温度/eV ${\text{%} }\Delta E_ {\rm{TE} }$ ${\text{%} } \Delta A$ 1.0(22) 7.53 7.84 10 8.72 10.30 5.0(22) 7.51 7.59 20 8.68 10.20 1.0(23) 7.52 7.63 30 8.60 9.99 5.0(23) 7.60 7.80 40 8.50 9.73 1.0(24) 7.70 8.00 50 8.39 9.48 3.0(24) 8.08 8.77 60 8.29 9.24 5.0(24) 8.39 9.48 70 8.19 9.04 7.0(24) 8.66 10.17 80 8.11 8.88 9.0(24) 8.91 10.86 90 8.04 8.74 1.0(25) 9.04 11.27 100 7.98 8.62 离子 束缚电子个数 原子态 ∆E/atomic unit %∆E 束缚电子对个数 ∆EEP/atomic unit ${\rm{Al}}^{11+}$ 2 ${\rm{1}}{{\rm{s}}^{\rm{2}}}{(^{\rm{1}}}{{{\rm{S}}}_{\rm{0}}})$ 0.556 3.83 1 0.556 ${\rm{Al}}^{10+}$ 3 $\rm{1 s^22 s(^2 S_{1/2})}$ 1.590 7.47 3 0.530 ${\rm{Al}}^{9+}$ 4 $\rm{1 s^22 s^2(^1 S_0)}$ 3.119 11.14 6 0.520 ${\rm{Al}}^{8+}$ 5 $\rm{1 s^22 s^22 p(^2 P_{1/2})}$ 5.152 14.82 10 0.515 ${\rm{Al}}^{7+}$ 6 $\rm{1 s^22 s^22 p^2(^3 P_0)}$ 7.662 18.48 15 0.511 ${\rm{Al}}^{6+}$ 7 $\rm{1 s^22 s^22 p^3(^4 S_{3/2})}$ 10.635 22.11 21 0.506 ${\rm{Al}}^{5+}$ 8 ${\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}{\rm{2}}{{\rm{p}}^{\rm{4}}}{(^{\rm{3}}}{{\rm{P}}_{\rm{2}}})$ 14.036 25.71 28 0.501 ${\rm{Al}}^{4+}$ 9 ${\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}{\rm{2}}{{\rm{p}}^{\rm{5}}}{(^{\rm{2}}}{{\rm{P}}_{{\rm{3/2}}}})$ 17.948 29.38 36 0.499 注1: %∆E表示等离子体对电子-电子相互作用的屏蔽而引起的能量移动量与其对核-电子相互作用的屏蔽而引起的能量移动量的百分比. 注2: ∆EEP表示总能量移动值对束缚电子对个数的平均值. -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39]
计量
- 文章访问数:3932
- PDF下载量:67
- 被引次数:0