-
本文利用MARS-F/K程序和解析方法, 模拟研究了‘类-DEMO’平衡下等离子体对共振磁扰动的流体响应和动理学响应 .研究发现, 当新的有理面经过等离子体边缘台基区时, 最外层有理面处总径向扰动场
$ b_{{\text{res}}\left( {{\text{tot}}} \right)}^{\text{1}} $ 和等离子体边界 X点附近扰动位移${\xi _X}$ 两个优化参数在特定的${q_{95}}$ (95%归一化极向磁通量处的安全因子)窗口出现峰值, 峰值的个数 y与环向模数 n呈正相关, 即$y \approx n\Delta {q_{95}}$ ($\Delta {q_{95}} = 3.5$ ) .上下两组线圈电流相位差的最优/差值与${q_{95}}$ 之间满足线性依赖关系, 可用线性函数进行拟合 .线圈电流幅值的优化不改变电流相位差的最优值, 但可以增大优化参数${\xi _X}$ .线圈电流幅值的最优值依赖于环向模数 n .包含背景粒子和高能粒子动理学效应的结果表明, 对于低$\beta $ (等离子体比压值)等离子体, 动理学响应与流体响应保持一致, 与有无强平行声波阻尼无关; 而对于高$\beta $ 等离子体, 在流体响应模型中需要考虑动理学效应的修正作用 .考虑强平行声波阻尼(${\kappa _\parallel } = 1.5$ )的流体响应模型能够很好地预测‘类-DEMO’平衡的等离子体响应 .As is well known, large-scale type-I edge localized modes (ELMs) may pose serious risks to machine components in future large fusion devices. The resonant magnetic perturbation (RMP), generated by magnetic coils external to the plasma, can either suppress or mitigate ELMs, as has been shown in recent experiments on several present-day fusion devices. Understanding the ELM control with RMP may involve various physics. This work focuses on the understanding of the roles played by three key physical quantities: the edge safety factor, the RMP coil current, and the particle drift kinetic effects resulting from thermal and fusion-born α-particles. Full toroidal computations are performed by using the MARS-F/K codes. The results show that the plasma response based figures-of-merit i.e. the pitch resonant radial field component near the plasma edge and the plasma displacement near the X-point of the separatrix,consistently yield the same periodic amplification as$ q_{95} $ varies. The number of peaks, y,is positively correlated with the toroidal number n, i.e.$y \approx n\Delta {q_{95}}$ with$\Delta {q_{95}} = 3.5$ . The peak window in$ q_{95} $ occurs when a new resonant surface passes through a specific region of the plasma edge. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield a linear relationship between the optimal/worst current phase difference and$ q_{95} $ , which can be well fitted by a simple analytic model. The optimal value of coil current amplitude is sensitive to n. Compared with the same current amplitude assumed for the two/three rows of coils, the optimal current amplitude can increase the${\xi _{\text{X}}}$ but does not change the prediction of the relative toroidal phase difference. More advanced response model, including kinetic resonances between the RMP perturbation and drift motions of thermal particles and fusion-born alphas, shows that the modification of kinetic effects should be considered in order to better describe the plasma response to RMP fields in high- βplasmas. The fluid response model with a strong parallel sound wave damping (${\kappa _\parallel } = 1.5$ ) can well predict the plasma response for the ‘DEMO-like’ equilibria. For low β plasma, the kinetic response is consistent with the fluid response, whether a strong parallel sound wave damping exists or not.-
Keywords:
- resonant magnetic perturbation/
- plasma response/
- coil current optimization/
- drift kinetic effects
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] -
流体响应 动理学响应(TP, TP+EP) $n = 1—4$ $n = 1$ ${\kappa _\parallel } = 1.5$ ${\kappa _\parallel } = 1.5$ ${\kappa _\parallel } = 0$ 中线圈 上下两组线圈 上中下三组线圈 中线圈 ${q_{95} } = 3.0—6.5$ ${q_{95}} = 3.27$ $\begin{gathered}{q_{95}} = 3.27\left( {{\beta _{\text{N}}} = 2.69} \right)\\{q_{95}} = 6.54\left( {{\beta _{\text{N}}} = 1.35} \right)\end{gathered}$ — $\begin{gathered} \Delta {\varPhi ^{ {\text{UL} } } } = {\varPhi ^{\text{U} } } - {\varPhi ^{\text{L} } } \\ = - {180^{\circ} }—{180^{\circ} } \end{gathered}$ $\begin{gathered}{\varPhi ^{\text{U} } } - {\varPhi ^{\text{M} } } = - {180^{\circ} }—{180^{\circ} }\\{\varPhi ^{\text{L} } } - {\varPhi ^{\text{M} } } = - {180^{\circ} }—{180^{\circ} }\end{gathered}$ — $ {I^{\text{M}}} = 90{\text{ kAt}} $ $ \begin{gathered}{I^{\text{U}}} = {I^{\text{L}}} = 90{\text{ kAt}}\\ {I^{\text{U}}} + {I^{\text{L}}} = 180{\text{ kAt}} \end{gathered}$ $\begin{gathered} {I^{\text{U}}} = {I^{\text{M}}} = {I^{\text{L}}} = 90{\text{ kAt}}\\{I^{\text{U}}} + {I^{\text{M}}} + {I^{\text{L}}} = 270{\text{ kAt}} \end{gathered}$ $ {I^{\text{M}}} = 90{\text{ kAt}} $ 单组上线圈 单组下线圈 $n$ $\left| {{\xi _X}} \right|$/mm $\varPhi /\left( ^\circ \right)$ $\left| {{\xi _X}} \right|$/mm $\varPhi /\left( ^\circ \right)$ 1 39.98 $ - 155.8$ 39.41 $ - 67.3$ 2 16.19 $ - 156.4$ 11.16 $ - 48.1$ 3 3.46 $ - 107.0$ 11.09 $22.4$ 4 6.90 $149.4$ 1.20 $ - 98.8$ $n$ ${I^{\text{U}}}/{\text{kAt}}$ ${I^{\text{L}}}/{\text{kAt}}$ $ ({\varPhi ^{\text{U}}} - {\varPhi ^{\text{L}}})/(^\circ ) $ 1 90.64 89.36 $88.5$ 2 106.56 73.44 $108.3$ 3 42.80 137.20 $ 129.4 $ 4 153.34 26.66 $ 111.8 $ $n$ $\left| {{\xi _X}} \right|$/mm $\varPhi {\text{/(}}^\circ )$ 1 $70.57$ $ - 110.8$ 2 5.52 $ - 102.5$ 3 12.30 $ - 39.0$ 4 6.33 $ - 178.8$ $n$ ${I^{\text{L}}}/{\text{kAt}}$ ${I^{\text{M}}}/{\text{kAt}}$ ${I^{\text{U}}}/{\text{kAt}}$ $({\varPhi ^{\text{L} } } - {\varPhi ^{\text{M} } }) $$ /(^\circ )$ $({\varPhi ^{\text{U} } } - {\varPhi ^{\text{M} } }) $$ /(^\circ )$ 1 70.95 127.05 72.00 $ - 43.5$ $45.0$ 2 91.68 45.33 132.99 $ - 54.4 $ $53.9$ 3 111.52 123.69 34.79 $ - 61.4$ $68.0$ 4 22.44 118.44 129.12 $ - 80.0$ $31.8$ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51]
计量
- 文章访问数:3075
- PDF下载量:61
- 被引次数:0