-
双结叠层太阳能电池由两个具有不同带隙吸收体的电池组成, 通过差异化吸收更宽范围波长的太阳光, 降低光子热化损失, 已展现出打破单结太阳能电池Shockley-Queisser极限效率的巨大优势. 获益于钙钛矿电池带隙可调和制备成本低的优点以及晶硅电池产业化的优势, 钙钛矿/晶硅叠层太阳电池成为光伏领域的研究热点. 本文系统的梳理了钙钛矿/晶硅叠层太阳能电池的最新研究进展, 重点从钙钛矿顶电池、中间互联层和晶硅底电池的结构出发, 总结出高效叠层器件在光学和电学方面的设计原则. 本文还详细地分析了限制钙钛矿/晶硅叠层太阳能电池继续提效的关键因素及解决措施, 这对于钙钛矿/晶硅叠层太阳能电池的产业化之路是非常重要的. 最后, 对下一代更高效率的低成本叠层太阳能电池进行了展望. 我们认为随着对光伏器件效率要求越来越高, 基于钙钛矿/晶硅叠层结构的三结电池将会成为下一代低成本高效电池的研究热点.Double junction tandem solar cells consisting of two absorbers with designed different band gaps show great advantage in breaking the Shockley-Queisser limit efficiency of single junction solar cell by differential absorption of sunlight in a wider range of wavelengths and reducing the thermal loss of photons. Owing to the advantages of adjustable band gap and low cost of perovskite cells, perovskite/crystalline silicon tandem solar cells have become a research hotspot in photovoltaics. We systematically review the latest research progress of perovskite/crystalline silicon tandem solar cells. Focusing on the structure of perovskite top cells, intermediate interconnection layers and crystalline silicon bottom cells, we summarize the design principles of high-efficiency tandem devices in optical and electrical aspects. We find that the optical and electrical engineering of each layer structure in perovskite/crystalline silicon tandem solar cells goes through the whole process of device preparation. We also summarize the challenges of limiting the further improvement of the efficiency of the perovskite/crystalline silicon tandem solar cells and the corresponding improvement measures, which covers the following respects: 1) Improving the balance between V ocand J scof the broadband perovskite cell through additive engineering and interface engineering; 2) improving the bandgap matching between the electrical layers and reducing the carrier transport barrier through adjusting the work function or conductivity of layers; 3) improving the photocurrent coupling between sub-cells and the photocurrent of tandem solar cells by using light engineering and conformal deposition technology of perovskite cells. At present, there have been many technologies to improve the stability of perovskite solar cells, such as additive engineering and interface engineering, but the problem has hardly been solved. Therefore, improving the stability of broadband gap perovskite solar cells to the level of crystalline silicon solar cells will become an important challenge to limit its large-scale application. In terms of efficiency, the mass production efficiency of perovskite/crystalline silicon tandem solar cells is far lower than that of the laboratory level. One of the reasons is that it is difficult to achieve low-cost and deposition of uniform large area perovskite solar cells. Therefore improving the stability of broadband gap perovskite solar cells and developing low-cost large-area perovskite deposition technology will become extremely critical. Finally we look forward to the next generation of higher efficient low-cost tandem solar cells. We believe that with the increasing demand for higher efficiency photovoltaic devices, the triple junction solar cells based on the perovskite/crystalline silicon stack structure will become the future photovoltaics.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] -
Device structure Si cell ICs Perovskite Bandgap ETL HTL Area/ PCE/ Jsc/ Voc/ FF/ Ref. /eV cm2 % (mA·cm–2) V % n-i-p n-BSF n++/p++a-Si:H CH3NH3PbI3 1.61 TiO2 Spiro-OMeTAD 1 13.7 11.5 1.58 75 [9] n-i-p n- PERC ITO Cs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)3 1.62 TiO2 Spiro-OMeTAD 1 22.8 17.6 1.75 73.8 [26] n-i-p n-PERC — (FAPbI3)0.83(MAPbBr3)0.17 1.59 SnO2 Spiro-OMeTAD 16 21.9 16.2 1.74 78 [27] n-i-p n-HJT ITO FA0.5MA0.38Cs0.12PbI2.04Br0.96 1.69 SnO2 Spiro-OMeTAD 0.06 22.2 16.5 1.655 81.1 [28] n-i-p n-HJT n+/p+nc-Si:H Cs0.19FA0.81Pb-(I0.78Br0.22)3 1.63 C60 Spiro-OMeTAD 0.25 22.7 16.8 1.751 77.1 [48] n-i-p n-PERC — CH3NH3PbI3 — SnO2 Spiro-OMeTAD 16 15.6 15.5 1.659 61 [49] p-i-n HJT n+/p+nc-Si:H CsxFA1–xPb(I Br)3 — C60/SnO2 Spiro-TTB 1.42 25.52 19.5 1.788 73.1 [42] p-i-n n-HJT ITO Cs0.15(FA0.83MA0.17)0.85Pb(I0.7Br0.3)3 1.64 C60/SnO2 PTAA 0.49 25.4 17.8 1.8 19.4 [29] p-i-n p-BSF ITO (FAMAPbI3)0.8(MAPbBr3)0.2 1.64 PCBM PTAA 0.27 21.02 16.13 1.645 79.23 [36] p-i-n HJT InOx Cs0.05MA0.15FA0.8PbI2.25Br0.75 1.68 C60/SnOx NiOx 0.832 26 19.8 1.7 77 [37] p-i-n n-HJT ITO Cs0.05(FA0.83MA0.17)0.95Pb(I1–xBrx)3 1.63 PC61BM F4-TCNQ doped polyTPD and NPD 1.088 25.3 19.02 1.793 74.3 [40] p-i-n HJT ITO Cs0.25FA0.75Pb(I0.85Br0.15)3+MAPbCl3 1.67 C60/SnO PolyTPD/NiOx 1 27.13 19.12 1.886 75.3 [30] p-i-n n-HJT ITO Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 1.68 C60 Me-4PACz(SAM) 1.064 29.15 19.26 1.9 79.52 [35] p-i-n n-HJT ITO Cs0.1MA0.9Pb(I0.9Br0.1)3 — C60/SnO2 PTAA 0.049 26 19.2 1.82 74.4 [44] p-i-n n-HJT n+/p+nc-Si:H FA0.9Cs0.1PbI2.87Br0.13 1.63 C60/SnO2 Spiro-TTB 0.5091 27.48 19.78 1.88 76.85 [46] p-i-n n-TOPCon ITO Cs0.22FA0.78Pb(Cl0.03Br0.15I0.85)3 — C60/SnO2 NiOx 1 27.63 19.68 1.794 78.27 [41] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49]
计量
- 文章访问数:15798
- PDF下载量:808
- 被引次数:0