搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    何民卿, 张华, 李明强, 彭力, 周沧涛

    Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device

    He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao
    PDF
    HTML
    导出引用
    • 基于神光II升级装置激光条件, 利用流体程序、粒子模拟程序和Fokker-Placnck程序, 模拟研究质子快点火中所需质子束的品质以及产生所需质子束的激光条件. 首先根据快点火靶的条件, 利用Fokker-Planck方程模拟快点火所需的质子束的能量范围, 模拟表明当背景等离子密度为300 g/cm 3时, 能量为7—12 MeV的质子束适合点火; 当背景等离子体密度为400 g/cm 3时, 能量为8—18 MeV的质子束适合点火. 再根据神光II升级装置实验条件研究质子束所需的激光参数, 通过利用粒子模拟程序, 结合流体程序给出的预等离子体, 分别模拟研究了加预等离子体和不加预等离子体两种情况下的质子加速, 在有预等离子体时得到的质子束最大能量约为22 MeV, 没有预等离子体时得到的质子束最大能量为17.5 MeV, 具体分析了两种情况下质子加速的物理机制, 其结果跟等离子体自由膨胀模型结果符合得很好.
      The proton beam energy deposition and the prodution of proton beams in proton fast ignition are investigated with the fluid program, partice-in-cell program and Fokker-Planck program based on the parameters of Shenguang II upgraded device. Firstly, according to the target parameters of fast ignition, the energy depositions of different energy protons are investigated. It is obtained that the higher the incident proton energy, the higher the surface density that the protons go through, accordingly the longer the proton deposition distance in the same background plasma density. On the assumption that the diameter of the compression core is 20–30 μm, and that the protons deposited in the core give the energy to the background plasma, the energy of the proton required by fast ignition is obtained by Fokker-Planck simulation. Protons with energy of 7–12 MeV are appropriate for ignition when the background plasma density is 300 g/cm 3, while 8–18 MeV protons for 400 g/cm 3. The background plasma temperatures are both 5 keV in the two cases. Secondly, we use particle-in-cell program to study the proton acceleration with or without preplasma which is given by fluid program with using the laser intensity $ I = 5.4 \times {10^{19}}{\text{ }}{\rm{W/c}}{{\rm{m}}^2} $ based on the parameters of Shenguang II upgraded device. The laser has 350 J of enegy, 3 ps of Gaussion pluse width and 10 µm of spot radius. The curvature of the target which is 10 µm thick copper coated with 1 µm thick hydrogen plasma, is 500 µm. The maximum proton energy obtained with preplama is 22 MeV, however the maximum proton energy obtained without preplasma is 17.5 MeV. The conversion efficiency from laser to protons is 5.12% with preplasma and 4.15% without preplasma. The conversion efficiency with preplasma is 20% higher than that without preplasma. We also study the mechanisms of the acceleration in the two situations. The freely expanding plasma model is used to explain the acceleration mechanism. The simulated electric field is smaller than that calculated by using the freely expanding plasma model, because some protons are accelerated at the time of plasma expansion, which consumes some electric field. The results of proton energy deposition show that the proton beams that are suitable for fast ignition can be obtained by the Shenguang II upgraded device.
          通信作者:何民卿,he_minqing@iapcm.ac.cn; 张华,zhanghua@sztu.edu.cn;
        • 基金项目:国家重点研发计划(批准号: 2016YFA0401100)、国家自然科学基金(批准号: 12075033, 11975055)和科学挑战专题(批准号: TZ2018005)资助的课题.
          Corresponding author:He Min-Qing,he_minqing@iapcm.ac.cn; Zhang Hua,zhanghua@sztu.edu.cn;
        • Funds:Project supported by the National Key Programme for S&T Research and Develoment (Grant No. 2016YFA0401100), the National Natural Science Foundation of China (Grant Nos. 12075033, 11975055), and the Science Challenge Project, China (Grant No. TZ2018005).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      • 转化效率/% 最高质子能/MeV 质子数/个 (7—18 MeV)
        无预等离子体 4.25 17 7.81×1012
        有预等离子体 5.12 25 1.01×1013
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      计量
      • 文章访问数:2630
      • PDF下载量:68
      • 被引次数:0
      出版历程
      • 收稿日期:2022-10-20
      • 修回日期:2023-02-23
      • 上网日期:2023-03-10
      • 刊出日期:2023-05-05

        返回文章
        返回
          Baidu
          map