搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明

Perovskite-phase interfacial intercalated layer-induced performance enhancement in SrFeOx-based memristors

Chen Kai-Hui, Fan Zhen, Dong Shuai, Li Wen-Jie, Chen Yi-Hong, Tian Guo, Chen De-Yang, Qin Ming-Hui, Zeng Min, Lu Xu-Bing, Zhou Guo-Fu, Gao Xing-Sen, Liu Jun-Ming
PDF
HTML
导出引用
  • SrFeO x(SFO)是一种能在SrFeO 2.5钙铁石(BM)相和SrFeO 3钙钛矿(PV)相之间发生可逆拓扑相变的材料. 这种相变能显著改变电导却维持晶格框架不变, 使SFO成为一种可靠的阻变材料. 目前大部分SFO基忆阻器使用单层BM-SFO作为阻变功能层, 这种器件一般表现出突变型阻变行为, 因而其应用被局限于两态存储. 对于神经形态计算等应用, 单层BM-SFO忆阻器存在阻态数少、阻值波动大等问题. 为解决这些问题, 本研究设计出BM-SFO/PV-SFO双层忆阻器, 其中PV-SFO层为富氧界面插层, 可在导电细丝形成过程中提供大量氧离子并在断裂过程中回收氧离子, 使导电细丝的几何尺寸(如直径)在更大范围内可调, 从而获得更多、更连续且稳定的阻态, 可用于模拟长时程增强和抑制等突触行为. 基于该器件仿真构建了全连接神经网络(ANN), 在手写体数字光学识别(ORHD)数据集进行在线训练后获得了86.3%的识别准确率, 相比于单层忆阻器基ANN的准确率提升69.3%. 本研究为SFO基忆阻器性能调控提供了一种新方法, 并展示了它们作为人工突触器件在神经形态计算方面的应用潜力.
    SrFeO x(SFO) is a kind of material that can undergo a reversible topotactic phase transformation between an SrFeO 2.5brownmillerite (BM) phase and an SrFeO 3perovskite (PV) phase. This phase transformation can cause drastic changes in physical properties such as electrical conductivity, while maintaining the lattice framework. This makes SFO a stable and reliable resistive switching (RS) material, which has many applications in fields like RS memory, logic operation and neuromorphic computing. Currently, in most of SFO-based memristors, a single BM-SFO layer is used as an RS functional layer, and the working principle is the electric field-induced formation and rupture of PV-SFO conductive filaments (CFs) in the BM-SFO matrix. Such devices typically exhibit abrupt RS behavior, i.e. an abrupt switching between high resistance state and low resistance state. Therefore, the application of these devices is limited to the binary information storage. For the emerging applications like neuromorphic computing, the BM-SFO single-layer memristors still face problems such as a small number of resistance states, large resistance fluctuation, and high nonlinearity under pulse writing. To solve these problems, a BM-SFO/PV-SFO double-layer memristor is designed in this work, in which the PV-SFO layer is an oxygen-rich interfacial intercalated layer, which can provide a large number of oxygen ions during the formation of CFs and withdraw these oxygen ions during the rupture of CFs. This allows the geometric size (e.g., diameter) of the CFs to be adjusted in a wide range, which is beneficial to obtaining continuously tunable, multiple resistance states. The RS behavior of the designed double-layer memristor is studied experimentally. Compared with the single-layer memristor, it exhibits good RS repeatability, small resistance fluctuation, small and narrowly distributed switching voltages. In addition, the double-layer memristor exhibits stable and gradual RS behavior, and hence it is used to emulate synaptic behaviors such as long-term potentiation and depression. A fully connected neural network (ANN) based on the double-layer memristor is simulated, and a recognition accuracy of 86.3% is obtained after online training on the ORHD dataset. Comparing with a single-layer memristor-based ANN, the recognition accuracy of the double-layer memristor-based one is improved by 69.3%. This study provides a new approach to modulating the performance of SFO-based memristors and demonstrates their great potential as artificial synaptic devices to be used in neuromorphic computing.
        通信作者:樊贞,fanzhen@m.scnu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 92163210, U1932125, 52172143)和广州市科技计划(批准号: 202201000008)资助的课题.
        Corresponding author:Fan Zhen,fanzhen@m.scnu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 92163210, U1932125, 52172143) and the Science and Technology Program of Guangzhou, China (Grant No. 202201000008).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

    • 器件 开关比 Set电压/V Reset电压/V 阻态数 文献
      TiN/Hf/HfOx/TiN >10 +1.1 +1.8 2 [31]
      Pt/Ta2O5–x/TaO2–x/Pt >10 –4.5 +6 2 [32,33]
      Ag/NiOx/Pt >10 ±1.1 ±0.5 2 [34,35]
      SiO2/TiN/WOx/SiO2 ≈10 +3 +3.3 2—3 [36,37]
      Al/TiOx/ITO >102 +2 –2 2 [38]
      Ag/ZnOx/Pt ≈107 +3 –3 2 [39]
      Pt/Ti/a-SrTiOx/Pt >102 –1.35 +1.9 2 [40]
      Au/Cr/BaTiO3/Nb:SrTiO3/In >104 –7 –1 8 [41]
      Au/BiFeO3/Pt >10 +4 –6 2 [42]
      Au/SrFeO2.5/SrRuO3 ≈102 –5 +3 2 [23]
      Ag/STO:Ag/SiO2/p++–Si ≈102 +3 –3 60 [43]
      Au/HfSe2/Ti ≈102 +1 –1.2 26 [44]
      Ag/Ti3C2TxNS/Pt ≈102 +3 +0.5 12 [45]
      Au/SrFeO2.5/SrFeO3/SrRuO3 ≈102 +0.7 –1.4 32 本工作
      下载: 导出CSV

      器件 阻态数 ANN结构 准确率/% 数据集 文献
      Pt/Li4Ti5O12/TiO2/Pt 100 3层网络(400×100×10) 87 MNIST(20×20) [46]
      Pt/TaOy/NP TaOx/Ta 200 3层网络(784×7840×10) 89 MNIST(28×28) [47]
      Ti/PdSe2/Au 200 3层网络(400×100×10) 94 MNIST(20×20) [48]
      Ta/HfO2/Pt 200 3层网络(64×54×10) 91 MNIST (8×8, 由20×20 下采样获得) [49]
      Ag/WSe2QDs/ La0.3Sr0.7MnO3/SrTiO3 70 3层网络 (NA) 91 ORHD(8×8) [50]
      Au/SrFeO2.5/SrFeO3/SrRuOx 32 2层网络 (64×10) 86 ORHD(8×8) 本工作
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

    计量
    • 文章访问数:5412
    • PDF下载量:293
    • 被引次数:0
    出版历程
    • 收稿日期:2022-10-10
    • 修回日期:2022-12-02
    • 上网日期:2022-12-28
    • 刊出日期:2023-05-05

      返回文章
      返回
        Baidu
        map